The Kestrel FPV HD Micro Drone: The Road to the Second Prototype

| Comments

Almost everything regarding my new frame design has been working out better than I expected. Using the Shapeoko XXL is easy. Cutting carbon fiber was even easier than I expected. The first prototype fit together quite well, and it flew almost perfectly. I mostly just needed to tune the PIDs on the pitch axis, because of that long fuselage on the Kestrel.

I’m slightly exaggerating. The first test cuts of the earliest prototype didn’t go perfectly. The bottom and side plates came out great, but the arms broke free of the carbon fiber before the motor holes were drilled. It wasn’t a big deal, and I learned from my mistakes. It also gave me a chance to test fit all the parts of the fuselage before cutting again.

The Kestrel FPV Micro HD Frame

That first fuselage was beefy. Much too beefy. The side plates are cut out of 3 mm carbon fiber sheets, and I believe I made the length of the side plates 6 or 7 mm thick. It didn’t need to be that sturdy. I’ve dialed that back quite a bit.

All my holes for M2 and M3 screws were too tight, and the slots in the side plates for mounting the top plate were too snug. I managed to get that first fuselage assembled, but I had to widen all the M3 holes, and I had to tap the top plate into place with a hammer!

I was excited to see that my design was coming together, though. All I had to do was tweak three or four variables, run the SVG files through my CAM software, and cut the real prototype!

The prototype flies great, but…

One of my major goals for this project is to build a lighter Acrobrat. Using those beefy 7 mm rails and having a beefy camera pod on the side plates may look nice and sturdy, but it adds quite a few grams.

I only know one way to figure out just how light, thin, and spindly you can make your quadcopter frame. That’s to make it thinner than you think you can get away with, then crash the heck out of it! Wherever it breaks is too thin, so that’s where it needs to be reinforced!

NOTE: Test flight before the Caddx Turtle V2 arrived. I wasn’t smart enough to update the name in the OSD!

There are a few spots I’m still worried about. The tabs that slot into the vibration-dampening bushings of the side plates can only be so wide, and the bottom plate is only 2 mm thick. I’m expecting that to be the weak point in a crash, but I’m also worried that I’ll need to make those tabs even narrower to allow the bushings to float a little more freely. We’ll see how that goes.

If it is a freestyle frame, how light can it get?

I’m concerned about this. The Acrobrat is designed to use 1407 or 1408 motors, and everything that goes along with that can easily push your weight over 250 grams. I’m not personally worried about the 250-gram limit, but doesn’t it seem like an interesting target to design against?

Heavier quads are better for freestyle. My prototype Kestrel frame is using all the hardware from my Leader 3, including the tiny 1106 motors. A whole set of those 1106 motors weighs less than a pair of 1408 motors, by the way.

I’ve flown my Leader 3 quite a bit, and upgrading to the Kestrel frame and a Caddx Turtle hasn’t increased the weight all that much. Even with the new camera and heavier frame, I believe I’m still lighter than my friend Brian’s Diatone GT-M3!

Flying freestyle with a quad that weighs 160 grams with a battery is challenging. My 680 gram 5” quad is an entirely different beast. I can huck him over a tree, roll upside down before I even reach the tree, and then finish off the S-turn when I get past.

The Kestrel FPV Micro HD Frame

With the 160-gram Leader 3, I can’t do that. If I invert before I clear the tree, my quad will likely end up in the tree. I have to wait until I’m almost past the tree before inverting with the Leader 3 or my 1106 Kestrel.

My Kestrel build weighs in at about 185 grams with a 4S 450 mAh battery. It flies for 2.5 to 4 minutes on a charge, but most of the time I land at just barely over 3 minutes. I tend to get pretty close to 3.3 volts per cell, but they usually recover to 3.7 volts shortly after the flight.

I ordered a bunch of 4S 650 mAh packs, too. They should put my Kestrel at just over 200 grams. I think it will be interesting to see if the extra weight makes the quad a little more huckable, and I’d like to see how that influences my flight times.

UPDATE: On my current prototype frame, my 1106 Kestrel weighs 128 grams dry, 189 grams with a 450 mAh 4S, and 217 grams with a 650 mAh 4S.

My friend Brian transplanted his Diatone GT-M3 with HGLRC 1407 motors over to a Kestrel frame, and he added a Caddx Turtle. The Diatone frame must be heavy, because the weight is one gram lighter after the upgrade! His Kestrel with 1407 motors weighs 168 grams dry, and 253 grams with a 650 mAh 4S battery.

If weight helps with freestyle, why keep the weight down?

In the end, it all comes down to cost. If I want to upgrade from 1106 to 1408 motors, I’m going to be carrying quite a bit more weight. That means my arms need to be sturdier, and that adds more weight. This extra weight starts to add up, and now I might need to upgrade to a bigger battery.

At this point, maybe the camera protection needs to get beefier, too. The bigger motors on the heavier quad will also be rougher on your batteries, and you’ll be more like to damage someone’s property when you crash.

Heavier quads are more likely to break, and they’re more likely to damage property. I can always make the frame tougher. That just adds more weight, and it doesn’t keep the other exposed components safe. A 180-gram quad is less likely to break a camera or battery than a 250-gram quad!

My perspective might also be a little different. In some parts of the world, that 250-gram weight limit is a real limitation. In those places, your only choice for freestyle might be a 250 gram drone!

The Kestrel FPV Micro HD Frame

For me, my HD micro drone is more of a backup; almost an afterthought. It is an extra piece of gear to keep in my bag alongside my 5” and 6” quads for those times when a bigger quad isn’t appropriate.

As I’m writing this, I realize that this sounds like a strange perspective for someone to have when they’re putting all this time and effort into designing a 3” HD micro quadcopter frame!

I know I’m not the only person interested in this sort of frame. I want something light, inexpensive, and relatively safe to keep in my bag. Adding an HD camera is a huge bonus for me. I’m sure I’ll miss my GoPro and superview when I fly my Kestrel, but I absolutely expect to fly my Kestrel in situations where I wouldn’t dare fly my 5” quad!

Of course, the Kestrel won’t just be for 1106 quads. I’m going to be making wider arms for 1408 motors, and I’m also going to try longer arms for 1806 or even 2204 motors with 4” props. My prototype will be for my specific use case.

Rubber bushings don’t solve all problems!

My first day out flying with an HD camera on the prototype Kestrel was a disappointment. I had a flutter at full throttle, and my cruising footage wasn’t smooth at all—even with a fresh set of props!

When I got home, I noticed that my flight stack wasn’t secure. I was surprised, because I wiggled it around to make sure it was solid while I was installing the Caddx Turtle. Two standoffs between the flight controller and ESC were busted, and two standoffs between the frame and ESC were broken as well!

I took out all the old nylon standoffs and soft-mount standoffs, and I replaced them with fresh M2 nylon standoffs. It is too bad I couldn’t reuse the soft standoffs. A piece of a nylon standoff broke off inside, so I just replaced them all with regular standoffs.

NOTE: Sorry about the vibrating footage!

It was almost dark when I finished buttoning the Kestrel back up, so I just took it outside the house to give it a few punches. My full-throttle oscillation seems to be gone. I didn’t get to do much slow cruising, but I’m hopeful that the shakiness is gone there, too.

You also need clean props. I tried to make a pass under my car, and I forgot to flip the switch from air mode to rate mode, and I chewed up the tips of two props on the pavement. They didn’t look terrible, but that definitely added more vibration.

I’m hopeful that the rubber bushings will help silence some vibrations, but I know for sure that it will only reduce vibrations with low amplitudes. I think I’ll be changing props a lot more often with an HD camera!

You sure do talk a lot, Pat. You haven’t even told us what’s next!

Yeah. I’m doing a bad job of getting to the point of this blog post!

I’m quite pleased with the first prototype of the Kestrel. I will probably be flying my copy as it is for quite a while, but I plan to cut frames for some friends soon. The prototype isn’t without flaws, but I am thankful that they’re not show-stoppers!

The Kestrel FPV Micro HD Frame

The most obvious problem is the camera protection. I based the radius of the curve on Caddx’s measurements for the Turtle. I’m guessing that those measurements don’t apply to the bigger lens on the newer Turtle cameras, because the lens sticks out nearly 2 mm past the front end of my quad!

That was easy enough to fix. I just had to adjust a variable. That’s why I love OpenSCAD.

I left the bottom standoff out of the build, but the holes are still there in the prototype. It turns out that I don’t need it for rigidity, and leaving it out saved more than 2 grams. I don’t know that I could put it back in place, either, because it would be awfully close to the camera.

It will just barely fit, and I’ll probably put it back in place before my test flights. The wiring harness for the Caddx Turtle is at the bottom, and on my current build, those wires will be exposed in a crash, and they are fragile wires.

I’ve already adjusted the model in an attempt to alleviate this issue. There’s plenty of room to bring the camera backwards. I moved the camera upwards by a few mm, and back far enough that the camera’s mounting screw is behind the center of the front bushing.

That should be back far enough that the frame’s bottom plate will protect the camera. In the worst case, I can extend the bottom plate forward far enough to keep those wires safe.

I also rearranged the various support pieces near the camera. I eliminated the vertical post connecting the front bushing to the front standoff. The camera is close enough, so I’m hopeful that the camera pod will be structurally sound enough to support the entirety of the front end. I also adjusted one of the camera’s braces so that it follows the direction of the carbon for strength.

The Kestrel FPV Micro HD Frame

Moving the camera back left the standoff a little too close to the camera. I’ve pushed that standoff back, so it shouldn’t interfere with uptilt.

While I was working with the side plate, I also decided to drop the deck by 3 mm. It should still be quite roomy. My stack is still using a set of tall standoffs to cap off the top, and those are a bit tall. I’ll probably still have just enough room even with those giant standoffs being used as screws, but I’ll just swap them out for proper M2 nylon nuts.

I’ve moved the camera back quite far. I think I’ll be OK, but there is a possibility that the props will be in view with the new design. If they are, I will adjust the angle of the arms to compensate!

The Foxeer Mix camera

I was waiting for my Caddx Turtle to arrive before I started messing with the shape and location of the camera pod. I wanted to move the camera inward, but not so far that I might interfere with the Turtle’s circuit board. I wanted to see it in the real world. I didn’t quite trust my measurements!

It turns out I have plenty of room for the Turtle, so I moved the camera way back. I looked up the Foxeer Mix HD camera, and I couldn’t believe how big its circuit board is! It is 37 mm long and wide!

I’m not even going to attempt to accommodate it in my frame. At 37 mm, it will stick quite far out each side of my frame. Not only that, but I wouldn’t be able to push the camera back very far at all.

It is a good thing the Foxeer Mix didn’t wind up being the most amazing HD FPV camera, or I might be disappointed!

I’m going to need testers!

Designing the Kestrel has been a lot of fun. Almost as much fun as flying it! Weather, camera problems, and my own mistakes have greatly impacted my flight time, and I’m realizing that I don’t need to be doing all the test flying on my own!

I’m looking for help. I don’t have enough time, parts, or funding to test every configuration that I’d like to support with the Kestrel. I’m most interested in the 1106-scale version of the frame, so that is where I’m focusing my time.

I’m about to cut a frame for my friend Brian. He’s going to be transplanting his upgraded Diatone GT-M3, so I’ll be cutting him beefier arms with wider holes to support both 9 mm or 12 mm motor hole spacing. I expect he’ll be right at or just over the 250 gram limit. I’m excited about taking his heavier Kestrel for a spin!

I’m also extremely interested in seeing a Kestrel with 4” arms, especially if it squeezes in under 250 grams! I don’t expect to be building one of these any time soon. I think it’d be a very interesting build, but at this point, it’d be too much like my 5” quads for me to include it in my fleet.

So what do you want to build?

I want to hear about what you want to build. If you’re an experienced freestyle pilot, and you want a Kestrel frame customized for an interesting configuration, please contact me! Leave a comment, send me an email, or stop by our Discord server. I have no idea what kind of a response I’m going to get from my request for help, so I have no idea how this is going to go.

I expect I’ll be sending a freebie prototype to a few select pilots, but I’d like to get as many of these out into the world as I can manage. Even so, I’m limited by my production capacity.

I’m going to have to figure out a reasonable way to charge for my time and materials if enough people are actually interested in trying out my frame.

How much will a prototype frame cost?

I tend to be overly honest and forthcoming about my costs and processes. This is probably why I’m a terrible business-person.

I did some very naive math after my first successful cut of a frame. I measured about how much space I used on each sheet of carbon, then figured out approximately how many frames I could fit on each sheet. I’m using relatively expensive carbon fiber sheets from GetFPV.

My math says each frame consumes just shy of $14 worth of carbon fiber. I can probably cut that in half if I use cheaper carbon, but I’m quite pleased with how sturdy it is. The cheap 3mm carbon from the Leader 3 is much easier to flex!

Lazy 3-day shipping withing the United States is around $7. Lets just say it costs me $20 of actual cash out of my pocket to get a frame out the door.

I haven’t taken labor into account. Sure, the CNC machine does most of the work, but at this point, I have to babysit for an hour or more for each frame. So far, I’ve broken a $20 endmill while cutting frames. I don’t know how often I’ll be breaking stuff, but I’ll need to account for that.

Things will slowly get more efficient on my end. If I ever get to the point where I can mass-produce these, I’m certain my costs will go down, too!

But this is where we’re at today. I have to make them myself. If you have interesting plans for my frame, please let me know!

How can I help support Pat?

I’ve set up an account on Patreon. I haven’t thought this through as well as I’d like, but here’s what I’m imagining so far. If you like what I’m doing, and you’d like to make sure I have access to the supplies and tools I need to keep doing these things, you can support me at Patreon.

I would prefer to provide a product or a more tangible service. Buying my frame would be a great way to support my future development, but I’m really not there yet. I’m going to be a huge production bottleneck for the time being.

There are Amazon affiliate links all over the place on my blog. You don’t have to buy what I’m linking to. Any purchase made shortly after clicking one of my links will earn me a small percentage, and every little bit helps!

This section could use a blog post or Patreon post of its own—maybe both! I need to put more thought into this.

The current specs of Pat’s personal Kestrel prototype

My Kestrel is built using the guts of a Full Speed Leader 3 and a Caddx Turtle. It is currently weighing in at 123 grams dry, and 183 grams with a 4S 450 mAh CNHL battery. I’m getting flight times ranging from 2.5 minutes to 4.5 minutes, but most of my somewhat aggressive freestyle flights come in at right around 3 minutes.

Here’s the laundry list:

  • F4 Flight Controller
  • 28 amp blheli_s 4-in-1 ESC
  • 25-600 mw VTX (my smartaudio is busted!)
  • 1106 4500 kv motors
  • Caddx Turtle V2
  • HQ 3x3x3 3-hole props
  • Crappy dipole antenna
  • 186 grams with CNHL 4S 450 mAh
  • GPL licensed design
  • Currently hosted on Thingiverse

Conclusion

I’ve already started cutting updated carbon. We’ll probably be transplanting Brian’s Diatone GT-M3 this weekend or early next week. I can’t wait to see how that flies.

I’m excited. I’m tweaking designs, cutting frames, and slowly collecting some HD footage. I’m sure it won’t be long before the next update, especially if it stops being rainy and cloudy!

Are you looking for a lighter 3” freestyle frame with removable arms? Do you think I’m on the right track here? Are you interested in helping me test my design? Leave a comment, or stop by our Discord server and talk to me!

My First Shapeoko CNC Adventure: Cutting Carbon Fiber

| Comments

I bought a Shapeoko XXL CNC router, and I have almost no idea what I’m doing. What’s the first project someone should attempt on their new, freshly assembled, and untested CNC machine? Carving or cutting something with a cheap piece of scrap pine is probably a smart place to start. I may not be that smart.

My first CNC project was cutting an FPV quadcopter frame out of carbon fiber!

Mind the cancerous dust!

Carbon fiber dust is dangerous. It is extremely fine and quite conductive. It can short-circuit electronics, and it can probably cause lung cancer.

There are several interesting possible ways to reduce these risks. I’m impatient, and I have yet to test any of those possibilities. I have a filtered mask, a shopvac knockoff from Harbor Freight, and I try to cut with the garage door open.

Don’t do this at home. Don’t do this at work. Don’t do this anywhere. I’m working on a better solution. I was impatient, and wanted to get my prototype cut. Hopefully, I’ll be better prepared for the next iteration!

Carbon fiber isn’t cheap

My quadcopter frames required me to buy carbon fiber sheets in three different thicknesses: 1 mm, 2mm, and 3mm. Each is more expensive than the last. The three sheets of high-quality 3K carbon cost me about $200.

I’ve had to file and saw carbon fiber before, and it isn’t all that difficult to cut. It isn’t all that demanding on your machine. It is infinitely easier on your machine that cutting aluminum, though I hear it is quite rough on your bits.

I didn’t take notes as I was working

I’ve done a bad job at documenting my experimentation. At first, my CAM software was set to inches. This seemed easier for me, because my endmills are measured in inches. Unfortunately, I kept goofing up my cutting depth when converting from metric.

So at some point, I switched everything over to metric. That’s when I got mixed up on my cutting speeds.

I did do one test cut into a scrap of particle board

My first test cut with Carbide 3D’s 0.0625” endmill was into a scrap of particle board. I considered my attempt to be quite a success, even though I had to cancel the job long before it was over.

Kestrel Prototype After its Maiden Flight

I accidentally set my cutting depth to about 0.4” instead of 3 mm. Did I set it to 0.4” manually? Did I accidentally leave something at the default? I have no idea. I just know my cut was approaching the depth limit of my endmill, so I had to cut it short!

Goofing up the cutting depth has been my most common mistake so far.

The first cuts into carbon fiber

The first thing I attempted to cut was the arm-bracing plate of my quadcopter frame. It is the only 1 mm part, and that’s the cheapest sheet of carbon fiber in my collection. It seemed like the safest place to start!

Arms and Sideplates Cut on the Shapeoko XXL

I’m sure you can guess what I did. I goofed up the depth again, and I had to stop the job early. It only got as far as cutting the perimeter. The job was set up to cut the entire perimeter first, then drill out all the holes.

I was still excited. The machine had no trouble cutting the carbon fiber. The only problem so far had been human error!

Making more mistakes

The bulk of my quadcopter’s frame is 3 mm thick. I laid out the side plates and four arms in OpenSCAD, loaded them into Carbide Create, and had a go at cutting them!

I believe they were running at a feed rate of 16 inches per minute with a glacially slow plunge rate. Watching the machine retract 10 mm above the carbon fiber at that plunge speed for every move wasn’t fun. I’ve bumped up the plunge rate without trouble, but I don’t think I’ve found the place to limit the retract height in Carbide Create yet.

This cut went reasonably well. I added tabs to the parts to keep them in place during the cutting process, but my guesses at tab widths and heights were terrible. The ends of the side plates came loose while drilling out the grommet holes, and the arms came completely loose before the holes were drilled.

I got enough parts out to test fit my side plates to the bottom plate, but the arms were completely unusable.

Learning from my mistakes

For the next attempt, I broke each job up into two different tool paths. The first path drilled all the holes and cut out any internal voids in the parts. The second tool path carved the arms and side plates out of the sheet of carbon fiber.

This went much better, but I had new problems to deal with!

What were the new problems?

I imagine my problems were exacerbated by my increase to a cutting rate of 800 mm per minute. That’s approximately double my initial cutting rate! Two bad things happened, but I’m not sure which happened first.

On my very first cut, I used some Nitto double-side tape to hold the 1 mm sheet of carbon fiber to the wasteboard. All my carbon fiber sheets have the same length and width, so I used three screws and washers to hold the corners down. This worked well on the cuts into 1 mm and 2 mm carbon fiber.

At the higher speeds, the 3 mm carbon fiber sheet managed to work its way loose, and it was moving back and forth on the Z-axis!

Not only that, but my router was wobbling around!

I thought I was imagining it, but it sure was moving around. One of the pulleys holding the router to the X-axis had worked its way loose!

Recovering from the setback

I canceled the job, and I jogged the router upward by a few inches. I tightened the pulley, and I secured my carbon fiber sheet with a fourth screw and washer.

If I had been using my 3D printer, I would have scrapped the parts and started over. This isn’t a 3D printer, though!

Camera Pod is a bit messed up on the second prototype

I simply restarted the job. The machine wasted some time cutting into areas it had already visited on the first attempt, but that was OK. I didn’t have to waste $10 worth of carbon fiber on a failure.

The cuts weren’t perfect. The struts around my quadcopter’s camera mount are a little messed up, but they’re perfectly usable!

Then I broke a $20 endmill

It is a good thing I ordered two 0.0625” endmills when I bought my Shapeoko! While cutting the perimeter of one of my quadcopter’s arms, my endmill broke!

I’m pretty sure that at any reasonable cutting speed, my Dewalt router spins at a higher RPM than necessary, so I don’t think that was the problem.

I already know how to recover from a failure. I canceled the job, and I jogged the router up about two inches above my work surface. Thank goodness I had one more bit to use!

I broke an endmill in carbon fiber!

But that’s all I had. I’d have been set back quite a few days if I broke this one.

The holes were all drilled, so I disabled that part of the job. I lowered the cutting speed to 500 mm per minute, decreased my cutting depth from 0.4 mm to 0.3 mm, and I exported the gcode again. I also turned up the speed of the router a couple of notches. As I said before, I doubt the router was spinning too slowly. If anything, it is always spinning too fast for carbon fiber. At that point, I’d prefer to melt some epoxy and have rougher edges than have to wait a few days for a new endmill!

Success!

Less than an hour later, I had all the parts I needed to assemble my prototype quadcopter!

Amazingly, the quadcopter flies great. I’ve made quite a few tweaks to the design. They’ll make the frame quite a bit better, but they’re not required for me to begin testing. I think I’ve had a tremendous success!

Upcoming improvements to my process

The Internet tells me that I should be using fishtail endmills when cutting carbon fiber. Carbide 3D’s wiki pointed me towards a set of 0.0625” fishtail endmills on eBay. I was able to buy a pack of 10 for about $23. That’s what I paid for a single bit from Carbide 3D.

1/16th Inch Fishtail Endmills

I’ve installed one on my router, but I haven’t had a chance to test it yet. As long as it works about as well as the Carbide 3D bit, I will be pleased. I have a feeling it will be at least a small upgrade when cutting carbon fiber, though.

I need to work on dust collection, and I really should build some sort of enclosure if I’m going to be cutting carbon fiber often.

Conclusion

My Shapeoko has been a lot of fun so far, and a lot less intimidating than I expected! Cutting carbon fiber was less of a challenge than I expected, and I’m looking forward to cutting the next revision of my prototype quadcopter frame!

I’m not sure what my next project is going to be, but I have a few ideas lined up. My friends and I are talking about designing a bartop arcade cabinet, and I need to design some sort of SWAG for Patreon. The latter should be a quick and easy project, so that will probably be up next.

Do you have a hobby-grade CNC router? Are you cutting quadcopter frames out of carbon fiber? Have I done a good job at my first attempt? Do you have any questions? Leave a comment below, or stop by [our Discord server][bw] to chat with me about it!

My Shapeoko CNC Journey vs. 3D-Printing: CNC Software is Awful!

| Comments

My Shapeoko XXL arrived about a week ago. It took me a day or two to assemble it. I didn’t think it was going to be a difficult build, and it wasn’t. In fact, it was even easier than I expected!

I only had two complaints during the build, and one complaint afterwards. I don’t want to go into too much detail here, but I feel that it would be rude to mention my complaints without summarizing them.

Both complaints are in regard to the drag chains. There isn’t enough clearance between the X-axis limit switch and the drag chain. You need to shim and bend the drag chain bracket, or else the drag chain catches on the limit switch. The drag chains are attached to the rails with VHB tape. One of them already came loose. I’m going to need to drill holes and screw those drag chains down.

Also, I was under the impression that the Shapeoko’s GRBL firmware is correctly configured from the factory. My first few attempts at running the machine involved the router slamming into the bed. I tried using three different pieces of software to generate the gcode, and they all did the same thing as Carbide 3D’s “Hello, World,” file.

They were all going in the wrong direction when retracting the tool. I reversed the Z-axis in GRBL, and immediately had a successful cut. I’m not sure whether I’ve done the right thing yet. I’ll write about how the cutting workflow goes after I have some proper successes under my belt!

CNC software is awful

I’m not helped by the fact that I run Linux on all my machines, but even if I weren’t, the 3D-printing software ecosystem is leaps and bounds ahead of CAM software for CNC routers!

Open-source slicers for 3D printers are abundant and extremely capable. Slic3r, specifically the Prusa Edition, has been improving tremendously ever since the Prusa Mk2 started shipping. It seems to have mostly caught up with everyone’s favorite commercial slicer: Simplify 3D.

Technically speaking, slicers are CAM software—Computer Aided Manufacturing. CAM software converts your 2D or 3D model into gcode that runs on your CNC router. Just like a slicer.

Open-source CAM software is archaic compared to slicers. I haven’t dug deep into any of the open source packages yet, so I fully expect my opinions to change in a few months. That isn’t going to stop me from writing about what I have learned so far!

The commercial packages with reasonable price tags for a hobbyist are better, but still not great. They’re definitely a step up, but not nearly as big a step as I would have hoped!

2.5D vs. 3D CAM vs. V-Carving

2.5D CAM software works a lot like a slicer for your 3D printer. It carves one layer, lowers the tool, and then carves the next layer. If you are cutting a 3D shape, you will see stair stepping in your object.

On your 3D printer, those steps are 0.1mm high, so you can get rather smooth curves out of it. On a CNC router, those steps might be 10 or 20 mm tall. This doesn’t matter for the rather two-dimensional parts I’m cutting for my carbon fiber quadcopter frame, but it will matter a great deal if you’re cutting something with curves on the Z-axis!

3D CAM software mills smooth lines on the Z-axis by slowly raising and lowering the cutting tool as it is moving. This will result in a smoother finish than you can get with an FDM 3D printer.

My understanding is that 2.5D CAM software tends to create more efficient toolpaths for simple parts than most 3D CAM software.

Finally, there’s v-carving. This is what you use when you want to engrave text or other fine detail. With normal milling, the smallest detail you can create is the width of your mill. If you use a V-shaped bit, it is possible for the machine to carve a tiny point, but how does it do this?

By varying the depth of cut, the machine can control how narrow a line can be. The deeper you go, the wider it gets!

I don’t have any V-bits yet, so I haven’t done much research here.

3D CAM

PyCAM seems to be the top-tier open-source 3D CAM package, so it is the first thing I played around with. The interface seems clunky, and you really need to know what you’re doing to use it properly. It seems to do a reasonable job generating proper 3D toolpaths, but as far as I can tell, it doesn’t give you the option of leaving support structures behind.

Supports are different than what we use in the 3D-printing world. They’re much simpler here. CAM software lets you define areas of material to be left behind. These are referred to as tabs.

When I am cutting carbon fiber quadcopter arms, I will leave about a 1 mm square of material behind on each side of the arm. That will keep it in place, so it doesn’t pop out of place and get destroyed by the router when the next arm is being cut. Just like with 3D-printed supports, I will have to cut those out manually at the end.

The commercial, hobby-grade 3D CAM of choice seems to be MeshCAM. I run Linux on all my machines at home, and, like most CAM software, MeshCAM is only available for Windows and Mac. However, version 6 seems to work mostly fine under Wine. I had trouble with the Beta for Version 7. That trouble isn’t making me want to invest $250 in this product!

MeshCAM is much easier for me to understand than PyCAM. I’m sure MeshCAM is miles ahead of PyCAM, but my simple brain makes them look mostly comparable. MeshCAM has a simple interface for adding supports, and that alone might justify the $250 price tag for me!

I’m not in a rush here. My first projects don’t require 3D CAM software.

2.5D CAM

My first successful cut on my machine was done using JSCut. JSCut is open source, and it runs in your web browser. Like all the 2.5D software I’ve tried so far, JSCut is pretty clunky.

It will let you insert tabs, but you have to add them to your SVG file before importing your model into JSCut. The toolpaths generated by JSCut are very simple and not terribly configurable. When I import my quadcopter arm, it wants to just carve the outline before drilling the holes for the motor mounts.

I guess this won’t be a big deal if I add the appropriate tabs, but it would make more sense to me to mill out all the holes while the arm is at its most rigid. I can make this happen, but only if I import the holes and the arm as two separate SVG files. I hope!

For now, I’m probably going to be using Carbide Create—the no-cost software package for Carbide 3D’s line of CNC routers. As far as I can tell, adding tabs and choosing the order of my cuts should be relatively straightforward in Carbide Create.

However, selecting multiple nodes in Carbide Create is dumb. The only way to do it is by drawing a box around the items you want to select. There is no control-click option. I want to select the five holes on one end of my object along with the two holes on the other. It is impossible to select all seven holes without also selecting the outline of the arm!

V-Carving

I’ve barely looked at V-Carving. The top-tier hobby-grade V-Carving product seems to be V-Carve Desktop or V-Carve Pro from Vectric. I haven’t done enough research to know what differences there are between the two other than price. Desktop is $350 and Pro is $750.

I have absolutely no idea if V-Carve Desktop or V-Carve Pro function under Wine. For what it is worth, it looks like V-Carve Pro or Desktop can also handle 3D works.

It seems you can do reasonable V-carving with Carbide Create, and Carbide Create runs just fine under Wine. When I pick up my first V-bit, this is where I will start!

What about Fusion 360?

Autodesk Fusion 360 looks like a fantastic CAM tool. Like most CAM tools, I haven’t actually used it. Yet.

But I have done some research. It sounds like Fusion 360 is fantastic at CAM as long as you created your object using Fusion 360. If you’re importing an STL, things are less awesome.

Fusion 360 doesn’t run on Linux, and it sounds like a pain to get it working. I do most of my modeling using OpenSCAD, so I’m not too excited about the idea of getting Fusion 360 running just for its CAM functionality!

I always tell people that 3D-printing is very different than using their inkjet printer

On your laser or inkjet printer, you hit the print button, and a perfect copy comes out. I always tell people how much more complicated 3D printing is. You can’t just hit the button.

Check your printer. Make sure the bed is clear. Make sure your filament is loaded. Keep an eye on your print just in case it fails.

Compared to a CNC router, a 3D printer may as well be an inkjet printer! With a CNC router, you will often run multiple gcode files to produce a single object.

You’ll zero out your CNC, and cut the first file using a big endmill to strip away huge pieces of material. Then you might change to a much smaller ball-shaped bit and run your next file to carve out your smooth 3D contours. After that, maybe you’ll switch to a V-shaped bit to engrave writing and detailed designs. After all that, you’ll switch back to a beefy endmill to cut your piece the rest of the way out of the material.

I complain if I have to change filament in the middle of a print. Now I’m going to have to do the equivalent at least once on most CNC router jobs?! I might even have to do it three or four times!

CNC routers are faster than 3D printers

My old 3D-printed nylon quadcopter frame required two print jobs to build, and each job took nearly three hours.

Making my new carbon fiber frame will require me to cut three different thicknesses of carbon fiber, and cutting the parts will take less than ten minutes per sheet. This is only a rough estimate based on the time it took to run a test cut of one arm on a piece of particle board.

It may not be a perfectly direct comparison, because the two frames aren’t exactly identical, but I fully expect this to be at least an order of magnitude faster than 3D-printing.

One of the biggest differences here is trading some of my time for an increase in manufacturing speed. 3D-printing requires me to interact with the printer for a few minutes when the three-hour job starts and ends, and my interaction is quite minimal.

The CNC requires a little more effort on my part. I have to clamp down the carbon fiber. I have to make sure it is nice and squared up, because the quadcopter is strongest when the carbon runs parallel to the arms. I also have to zero out my tool in an unused and spacious enough section of the carbon fiber sheet.

Doubling or tripling the effort on my part means I can have sturdier parts ready in a fraction of the time. Is it a good trade-off? In this case, it certainly is!

Why is open source 3D-printing software so far ahead of CNC CAM software?

It has to be the accessibility of the technology. You can buy a reasonable 3D printer from Monoprice for $200 to $300. You can upgrade to one of the most advanced consumer printers available, the Prusa Mk3, for less than $1,000. These machines are small, and they’re quiet enough that they can sit next to your desk in an apartment.

My Shapeoko XXL cost me a little over $2,000. At this size, a belt-driven machine like this is about as low end as you can get. My machine’s little brother, the Shapeoko 3, is around $1,200. I would say the Shapeoko 3 is roughly equivalent to that $200 3D printer from Monoprice. I would say that the CNC router equivalent of the Prusa Mk3 probably would be driven by lead screws, and it would cost somewhere in the neighborhood of $6,000 to $10,000.

That big difference in price isn’t the only thing keeping CNC routers out of the majority of hobbyist’s hands. Spinning up a router to carve wood is loud and extremely messy. You’re not going to run the little 18” x 18” Shapeoko 3’s Dewalt router in the living room of your apartment. It is going to make a mess, and the neighbors are going to complain about the noise.

These barriers to entry make CNC routers at least an order of magnitude more rare than 3D printers. I can easily name five local friends who own 3D printers. I’m the only person I know with a CNC router.

What’s next?

I can see that the next few weeks are going to be fun and exciting. I’ve made my first test cut, and it went better than I expected. My design for a quadcopter frame is about 75% of the way to the first prototype. I imagine I’ll be cutting that sooner than I expected.

I keep adding more projects to my list. I just tweeted about my interest in cutting a Coleco Pac-Man-inspired bartop arcade cabinet, and two of my friends are interested in helping out and building their own. I won’t be surprised if a few more friends join in on that fun!

My friend Brian wants to mill a small wooden clock with his face on it. He wants to put it behind his Prusa Mk3 to show off just how quickly things are moving in his timelapse videos.

Have you bought a CNC router already, or are you thinking about pulling the trigger? What CNC machine did you choose? Is it better than mine?! Do you have a question? Tell me about it in the comments, or stop by our Discord server to chat about it!

Moon Lence Ultralight Folding Chair

| Comments

I don’t enjoy writing reviews. I’ve tried reviewing products on more than one occasion. Every now and then, a company will send me something to review. Usually those products are just fine, and every now and then they are also a good value. Sometimes those free products are terrible. I once received a 3D scanner from Gearbest, and it was total garbage and a complete waste of my time.

I was told that if you can’t say something nice, don’t say anything at all. I didn’t have a single nice thing to say about that scanner, so I didn’t write a single word.

I’m getting a little off track here, because Moon Lence did not send me a free chair. I bought one of their chairs almost a year ago. I was looking for a compact, light-weight chair to strap to my quadcopter backpack.

There are a lot of chairs like this on Amazon. In fact, most of them look almost identical to the chair from Moon Lence. I’m pretty sure I chose this particular chair due to the price. It was probably a few dollars cheaper than any of the other similar chairs available with Prime shipping!

Why are you writing about this chair a year later?

My chair broke. A tear showed up in the fabric near one of the corners, and I noticed my butt was starting to touch the frame sometimes. It was still usable, but I figured it was time to order a replacement.

Moon Lence improved the chair quite a bit since I bought mine. They’re added larger feet. This is a huge upgrade, because the narrow feet on my original chair tend to sink into the ground. Especially if it rained recently.

My Portable Chair from Moon Lence

The shape is a little different, too. I feel like I’m sitting up a little straighter. They’ve also added a small pocket to the chair, and it is a pretty good spot to stow my phone while I’m flying.

I ordered a two-pack of new Moon Lence chairs. When they arrived, I noticed that the box claimed that these chairs have a lifetime warranty. Have they always had this warranty? Will my old chair be covered?

The warranty warranted the blog post!

My old chair did have the lifetime warranty, and it was covered. I exchanged a couple of emails with Moon Lence, and a complete replacement chair arrived in three or four days! The replacement was the older model with the smaller feet.

As far as I was concerned, this was just a cheap, two-pound chair. It was disposable. If it was terrible, who cares? Nobody will care about my opinion. I believe it became a more interesting product now that I know about the warranty.

A great chair for FPV quad pilots

The Moon Lence portable chair weighs about two pounds, and it collapses down to be rather compact for transport. When I go flying, I almost always bring my giant ThinkTank FPV Airport Helipak backpack. With all my gear, the bag already weighs more than 20 pounds. Adding a two pound chair doesn’t weigh me down much, and the chair fits well in the tripod storage area—ThinkTank bags are usually for photography!

It only takes a minute or so to set the chair up or pack it away. I don’t use the carrying case. I just strap the folded frame and the seat to the side of my backpack.

I think it is quite comfortable. I’m about 6’ tall. When I started using the chair, I should have been up at around 250 pounds. These days, I’m at about 190 pounds.

When we go out flying our drones, we’re often out at the park for three hours or more. I don’t sit for three hours straight, but I usually sit while I’m flying or spectating. I would guess that I’m sitting the majority of the time, though, and I’m never uncomfortable.

I used to carry a larger chair. When I rode my Hover-1 electric bike, or we flew at a spot with picnic tables, I would usually leave that big chair at home. Picnic tables are uncomfortable, and I’m getting old. If I’m out there sitting for an hour, I want support for my back. The Moon Lence chair has never failed me here.

I have no idea what the history of this chair is. I assume anyone can buy from a manufacturer in huge bulk with a custom logo, but for all I know, every chair on Amazon is a clone of a clone of a clone.

In any case, there are similar chairs available from other vendors with high backs. They weigh an extra pound, but I figured there was a good chance I would upgrade for the extra back support. In my opinion, the extra support is unnecessary. It might be useful if you wanted to rest your head and take a nap, but that’s of no use to me!

The Go Chair

My friend Brian and I are waiting for some folding chairs from Indiegogo to arrive—the Go Chair. They weigh a bit more than the Moon Lence chair, and the sitting experience looks like it will be comparable. The Go Chair costs three times as much, but it also folds up like an umbrella.

Will the Go Chair be worth paying three times the price? I’m excited about saving a minute or two each time I go out flying. That’s enough time to fly about half a battery, and it could be three hours each year.

When we ordered the Go Chairs, I wasn’t just excited about the way the Go Chair folds and unfolds. I was also excited about the larger footprint of its feet. My Moon Lence chair used to sink into the ground all the time. The new model with the huge feet from Moon Lence has completely solved that problem.

When the Go Chairs arrive, I’ll be sure to post an update!

Conclusion

You probably won’t need Moon Lence’s lifetime warranty. I use my chair several times each week. I imagine most people that own folding chairs only use them occasionally. Even so, why not buy the chair with the warranty? The price is comparable to other similar chairs on Amazon, and I think the price is quite low.

Now that I have spares, I keep one in the car. It is compact and hardly weighs anything, so it doesn’t take up much room, and I’m prepared in the event that I forget to strap my chair to my backpack—I just made this mistake a few days ago!

Do you have one of these ultralight portable hiking chairs? Is it like the Moon Lence chair, or is it something a little different? Is there a better option? Let me know about it in the comments, or stop by our Discord server to chat about it!

I am Designing a Freestyle HD Micro Quad Frame!

| Comments

I enjoy flying 3” micros. In fact, the first quadcopter frame I designed was a 3D-printed nylon frame sized for 3” props. I would have enjoyed trying 4” props, but my 3D printer isn’t big enough to print that style frame in a large enough size to accommodate bigger props.

I’ve been avoiding HD cameras on micro quads. I helped my friend Brian build a 3” quad with the original Runcam Split Mini—the first model with two boards. It was a fiddly build. If I remember correctly, his 20x20 stack was five boards high: 4-in-1 ESC, flight controller, the pair of Runcam Split boards, and a VTX. It was a lot of little wires to manage in a microscopic amount of space. Finding quality 20x20 components was very difficult at the time, too.

My Freestyle Micro Frame

After all that work, the footage from the Runcam Split wasn’t all that exciting. Micros just don’t fly as smooth as their 5” cousins, and everything just looks weird to me without GoPro’s Superview. It also doesn’t help that the bitrate on the Split seemed like it could use a boost.

A lot has happened since the Runcam Split’s debut. There are quite a few roomier 3” freestyle frames now, but the only one that truly piqued my interest is Ummagawd’s Acrobrat frame. The Split has competition these days with the Caddx Turtle and the Foxeer Legend.

There have been a lot of advancements in the electronics, too. 20x20 ESCs work better and are more reliable. It is easy to find good 20x20 flight controllers with fast F4 chips, and Betaflight has improved dramatically in the last year or so. My little Leader 3 flies quite a bit better than any micros we were building when the Split Mini was first released. The Leader 3 arrived fully assembled and only cost around $120. The parts for Brian’s old HD micro build cost $262.57.

Micro components are getting more reliable, and the selection of reasonably priced parts has improved tremendously since then. I think it is time to revisit the idea of a 3” HD micro quad.

Ummagawd’s Acrobrat

I am excited about the Acrobrat, but it doesn’t quite fit in with my needs. The Acrobrat is heavy and quite large. In fact, I used to have a smaller 4” quad at one point. My 4” quad isn’t a good comparison, because it was a tiny racing frame, but that quad was already so much bigger than any of my current 2.5” or 3” micros!

The extra weight is understandable, even if I’m not exactly thrilled about it. It is much easier to fly freestyle with a heavy quad. I can’t properly huck my Leader 3 over a tree. It only weighs about 150 grams, so it has a lot of trouble maintaining momentum under the drag of the air.

With my 680 gram 5” quad and a sharp blast of the throttle, I can go inverted before I even reach the tree. With the Leader 3, I had better be mostly past the tree before I stop accelerating forward.

I believe Tommy is doing a fantastic job. His idea to use rubber bushings to separate the clean and dirty sides of the quad is amazing. He has designed a great frame for an amazing 3” freestyle quad.

With the large footprint of the Acrobrat, I’d be tempted to run a 4” setup. I’d like to try going in both directions. I want a smaller, lighter Acrobrat for 1106 motors, and I’d like to test out a 4” Acrobrat with larger motors. I am more than a little curious about what sort of 4” quad I could squeeze in under 250 grams!

Albert Kim’s Crossbow frame

I like the way Albert Kim thinks. He also wants a light, 3” HD quad with camera isolation and 1106 motors. I was excited when I saw the prototype of his Crossbow frame from Tomoquads.

His 3D-printed TPU camera mount is smart. It is simpler than Tommy’s bushings, but I’m a little worried that it will be too stiff. All the TPU filament I have on hand is flexible, but it isn’t very soft. Tomoquads might be using softer TPU, but the stiffness of TPU isn’t my only problem with the concept.

Tommy’s Acrobrat design puts the mass of the battery, camera, and side plates on the same side of the suspension. It is difficult for vibrating motors to transmit Jello to the 80 or 90 gram combined mass of the camera, side plates, and battery.

The Runcam Split Mini’s camera weighs less than 10 grams. The TPU would need to be extremely soft to allow a 10 gram camera to keep itself steady in the middle of vibrations.

When I started designing my frame, there was probably an 80% chance that I was going to emulate the Crossbow’s TPU camera mount. It is simple, clever, and 3D printing is right in my wheelhouse. I’d rather print something here than have to track down and order rubber bushings!

What are my goals?

I am designing my HD micro frame using OpenSCAD. It is a parametric design, and the design will be open source.

What does parametric mean in this context? It means the design of the components is built up from measurements. If you want to use 1106 motors, you can punch in 9 mm for the motor hole spacing. If you want to go up to 2207 motors, you can punch in 16 mm, and the motor mount will scale up. The base will grow, and the tips of the motor guards will extend.

My Freestyle Micro Frame

So far, I’ve planned ahead well enough to make the following elements configurable:

  • Motor hole spacing
  • Arm length
  • Arm angle
  • Arm width
  • Prop diameter (for the mock prop ring)

I’m thinking about adding parameters for fuselage length, but I believe it would be best to keep the configuration to the arms. Most people can’t cut their own carbon, so I think it would be better to keep the center of the quad standardized. All of the necessary customization to accommodate different size propellers or various X, H, and stretch-X geometries can be realized with changes to only the arms.

What happened? I didn’t even talk about the goals yet!

I’m planning to emulate Tommy’s bushing idea from the Acrobrat. I ordered a big bag of reasonable bushings from McMaster-Carr. They should arrive in a few days. I won’t tell you about the bag of giant bushings that I accidentally ordered. They’re wider than a 1407 motor!

I have a complaint about both the Acrobrat and the Crossbow. It probably isn’t a big deal, but it still irks me. The carbon doesn’t run parallel to the arms. It is close on the Acrobrat, but it is nearly 45 degrees out of alignment on the Crossbow. The extra bracing in the front of both frames probably helps, but when the strands of carbon don’t run the entire length of the arm, you end up relying on the epoxy for rigidity and durability.

My Freestyle Frame

This is part of the reason I’m attempting to use individual, replaceable arms. That makes it easy to cut the carbon with the strands running parallel to the arm. Individual arms will also save me a lot of wasted carbon material, and it will make it easy to change the configuration of the quad.

Here’s a list of my design goals:

  • Individual, replaceable, configurable arms
  • Standard fuselage for all configurations
  • Scalable from 2.5” to 4”
  • Scalable from 1106 to 1806 motor mounts
  • Three 20x20 mm stacks
  • Props completely out of view of the HD FPM camera
  • Top-mount battery
  • Acrobrat-style bushings
  • 3” Freestyle micro HD with sub-200 gram all-up weight
  • 4” Freestyle micro HD with sub-250 gram all-up weight

My new Shapeoko XXL CNC router is in the hands of UPS, and as I write this, it is out for delivery! I’ve already ordered three 400x500 mm carbon fiber sheets from GetFPV: 1 mm, 2 mm, and 3mm.

I plan for the arms to be 3 mm, the bottom and side plates to be 2 mm, and the small brace plate under the arms will be 1 mm.

This is too long! I didn’t read it! What’s the elevator pitch?

I’m designing a smaller Acrobrat-like freestyle frame for HD FPV cameras with easily configurable arm geometry. It should allow 3” builds under 200 grams, and 4” builds under 250 grams. I hope! The design will be open source.

I want this frame to be a good upgrade path from your existing 2.5” or 3” bind-n-fly micro. Pick up a Runcam Split Mini or Caddx Turtle, transplant the guts of your Leader 3, and start recording awesome HD freestyle footage!

Does that seem like a reasonably accurate summary?

When will it be ready?

I have trouble even guessing at this. I’ve never operated a CNC router, and I’m still waiting for UPS to drop it off—I bet it will be here before I finish writing this, though!

My Shapeoko XXL Waiting To Be Unboxed

The Shapeoko is a kit, so I’m going to have to assemble it. Then I’m going to have to test it. Carbon fiber is relatively expensive and messy, so cutting frames won’t be my first project. It might not even be my second! But who knows. I’ll probably get impatient!

I don’t have the time or funds to test every configuration

Designing a frame is fun. If I can transplant my Leader 3 hardware into this frame and stick an HD camera on it, I’ll be happy. I don’t need to go past that, but I’d sure like to!

I’ve noticed that the quads in my bag tend to fall into three different buckets: I have my Tinyhawk for indoor flying, my 5” and 6” quads for capturing proper HD freestyle footage, and I have my 3” micro quad for more considerate outdoor flying.

I think building this frame out to fit 4” props would be fantastic. Power and efficiency go up dramatically compared to 3”, and it wouldn’t need to be all that much heavier. Conservative motor sizing and a reasonable 4S LiPo should put a sub-250 gram 4” build easily in reach.

I’m not so sure I want to buy the parts to build that quad. In my mind, it would just fall into the same bucket as my 5” quads. I would very much be interested in finding someone that wants to build that quad. There are parts of the world where the 250 gram weight limit is a real problem.

NOTE: That isn’t a micro. That’s my 5” freestyle rig.

If you’d like to be the guinea pig for a 4” version of my frame, please get in touch with me. Tell me about your plans, and I’ll work on getting you a frame. You can stop by and chat with me on our Discord server. Keeping it under 250 grams isn’t required, but it would be a much more interesting build!

I need to get my own 3” designed, cut, and flying first. I don’t think it would be right to send a crummy design that doesn’t work right out to someone without at least a little testing first!

How is the design going?

I’m much farther along than I expected! The arms seem reasonable, and they look correct at every length and angle I’ve tested. The mounting holes are there, and they line up with the mounting holes in the frame. I’m a little impressed by that, because it is easy to leave an important number out of your math somewhere in OpenSCAD and have things not quite line up!

The bottom plate is about half finished. It needs tabs to fit into the side plates’ grommets. I’m waiting for the grommets to arrive. The grommets are round, but I’ll be fitting them into oval holes. I’ll 3D-print some test parts with a variety of dimensions to see what shape works best.

My Freestyle Micro Frame

A wider oval will accommodate a wider tab on the bottom plate. The wider the tab, the less likely it will be to break in a crash. If it goes too wide, the bushing will lose a lot of its springiness. Testing will be required!

The bottom plate also needs some cutouts to save weight. That will be quick and easy.

I imagine there will be several iterations of the side plates. I’ve decided to separate the side plates with 20mm standoffs—that’s 5mm narrower than the Acrobrat. This is 1 mm wider than the FPV camera, and the narrower bottom plate should help shave a few grams off the frame.

Once I get the side plates ready, I plan to 3D print the components for a test fitting.

How can I keep up to date on the progress?

Of course, you can check back on my blog for updates. I’ve spent nearly ten years writing about my various projects as I’m working on them, and I don’t intend to stop now!

There will be videos on my YouTube channel, and I regularly post photos and random thoughts on Twitter. I would greatly appreciate it if you subscribe to my YouTube channel or follow me on Twitter. Interactions are even better!

I am set up on Patreon, but I’m doing a bad job of advertising it and making use of it. Maybe I should get better at that!

If you have questions, comments, or critiques, you can leave a comment or stop by our Discord server. I’d love to know what you think, and I would enjoy your input!

NOTE: I finished the final draft of this blog post before UPS arrived with the Shapeoko, but it will be a few hours before the photos and screenshots are ready. The CNC router was delivered before I managed to publish this!

I Bought a CNC Machine: I Have No Idea What I’m Doing

| Comments

I’ve been interested in owning a CNC machine for a long, long time. When I was building my arcade cabinet, I thought it would be awesome to have a machine that could quickly carve new cabinets out of 4x8’ sheets of plywood or MDF.

When I bought my 3D printer in 2014, I began thinking about CNC routers again. At the time, I didn’t have room for a large machine, and I didn’t have many interesting uses for a small machine.

That’s all changed. I have plenty of room in the garage for a large machine, and my newest hobby has me interested in being able to machine parts out of carbon fiber.

What is CNC?

Computer numerical control. Doesn’t the term sound antiquated? CNC machines move tools under the control of a computer.

3D printers are CNC machines. They use stepper motors to guide a tool along three axes. In the case of a 3D printer, that tool is an extruder. It melts plastic and deposits it in precise locations in order to build up a part from the ground up.

A CNC router is in the same family. Just like a 3D printer, CNC routers move a tool around on three axes; the biggest difference is the tool. A 3D printer moves the print head around to deposit material, while a CNC router moves a spindle around to remove material from a solid piece.

In either case, you model something in your CAD software, process that model, and send it the machine.

Which CNC routers should I have in my garage?

When I started shopping, I had two goals in mind. I want a CNC router to be able to cut quadcopter frames out of carbon fiber, and I’d also like a machine that can work with 4x8’ sheets of material from the lumber yard. Thankfully, these don’t need to be the same machine.

CNC routers that can operate on a full sheet of plywood are expensive and take up a lot of floor space. That’s why I’m excited about the Maslow CNC machine. I doubt that it has the precision to machine interlocking carbon fiber parts for my quadcopter frames, but it would most definitely meet my needs for furniture-scale projects—like arcade cabinets!

NOTE: Jeremy and I recently interviewed Winston Moy on The Create/Invent Podcast. You should check it out if you’re interested in owning your own CNC!

The Maslow is about ten feet long, but unlike a traditional CNC router, the Maslow cuts with the material standing up on its side. This means that you can put the Maslow up against a wall, and it will only take up about 10’ by 2’ of floor space.

My favorite feature of the Maslow is the price. The full kit is only $479! You have to supply some of your own lumber and a couple of bricks, but that doesn’t add much to the price. You’ll also have to supply your own router.

If you’re just getting started, you may want to check out the SainSmart 3018 Prover. My friend Alex recently bought one, and he’s enjoying the little machine quite a lot!

Which machine did I choose for cutting carbon fiber sheets?

Carbon fiber is rough on cutting bits, but it isn’t all that difficult to cut. If your machine can handle harder woods, then carbon fiber ought not to be a challenge. Carbon fiber sheets are available in a variety of sizes, so you could get away with a minuscule machine that would fit on a desk in your office.

I don’t want to cut the small sheets. I want a machine that can handle the larger 400x500 mm sheets with a thickness of up to 5 mm.

I quickly zeroed in on the Shapeoko CNC routers from Carbide 3D. Their base model, the Shapeoko 3 kit, is available for around $1,200 with a Dewalt router. Its cutting area is 16x16”. That’s just over 400mm, so it isn’t quite large enough to handle the 400x500mm sheets I want to cut.

This is where I got into trouble. The Shapeoko XL kit with a router is around $1,600. The extra $400 doubles the size of the cutting area to 16x33”. That’s plenty of room for the large carbon fiber sheets, so I can stop here, right? Can’t I?

Nope. I couldn’t. While I was weighing my options, I thought to measure the dated cabinets in my kitchen. This is where things get fuzzy.

I have a vivid memory of measuring the cabinet doors and deciding that I would need to go all the way up to the 33x33” Shapeoko XXL to fit the widest of my cabinet doors.

I just went to measure them, because I wanted to tell you the correct dimensions. My tallest doors are about 29”, and the widest doors are about 15”. These absolutely would fit in the Shapeoko XL! I wonder what made me think I needed to upgrade all the way to the biggest model?

This is almost definitely a happy accident. It might have been nice to save $400 and some floor space, but I’m not going to complain. The bigger machine will be more fun!

All that being said, if all you want to do is make quadcopter frames out of carbon fiber, there are small machines available for as little as $250. You’d just be limited to small sheets of carbon!

The Shapeoko XXL with a Dewalt router

I don’t need to rattle off all the specs—they’re listed clearly on Carbide 3D’s site. The Shapeoko XXL has a 33x33” cutting area with a 3” of Z-axis travel.

The Shapeoko routers don’t look particularly difficult to assemble. I’ll be reporting back once I get this thing up and running. The order page said there was a ten day lead time, so I am at least two weeks three or four days away from cutting anything with my Shapeoko XXL.

When I had my mind mostly made up about buying a Shapeoko, I asked my friend Jeremy S. Cook what he thought of it. Jeremy often uses his CNC router in projects that he posts to YouTube. He has a much nicer and more expensive machine than the Shapeoko, and he’s been using it for a while, so I was excited about getting some input from him.

I know enough from my 3D-printing experience that lead screws are a much better drive mechanism than belts. Belts are stretchy, so they have some slack. They can overshoot on fast travel, and they can stretch and miss their intended position if you’re trying to cut tougher materials. Lead screws are a huge upgrade.

However, machines that use lead screws are a lot more expensive. I don’t have any plans to cut aluminum, but if I did, the belts might make that problematic. I’m sure I’ll put that to the test at some point, but it isn’t a problem I’m particularly worried about!

What’s this about kitchen cabinet doors?

Our kitchen is more than adequate for our needs, but the cabinets are old. Some of the wood is rough around the edges. One of the doors has a hinge that doesn’t hold the door closed anymore.

In general, though, the kitchen in our new house is dark. The cabinets are stained fairly dark, and most of the walls are cabinets. As much as I hate the idea of covering up stain-grade wood, I figured that the easiest way to brighten up the kitchen would be filling any chips or dings in the wood and painting the cabinets.

Then I started shopping for a CNC router. A Google image search for ‘CNC cabinet doors’ turns up all sorts of interesting ideas. Some have elaborate and intricate designs. Others have simple patterns that look like they could be done by cutting rounded trim with a jigsaw and hitting that trim with a fancy router bit.

I tend to lean towards clean and simple, but I want to design cabinet doors that are interesting. A design that would be difficult to do well by hand.

I am not artistic, but I’m still hoping I can come up with a reasonable design. I’d like to design a pattern of some sort that progresses across the kitchen from one cabinet door to the next. My simple mind is seeing some sort of curved line carved into each door. That line should run from one end of the kitchen to the other.

My first CNC router project: a parametric 3” quadcopter frame

If you asked me what I’d do with a CNC machine a year ago, I know exactly what I would have said. I’d be cutting quadcopter frames. That’s still true, but at the time, I would have assumed I’d be cutting all my own frames for quadcopters with 5” or 6” propellers.

I’m not as enthusiastic about that idea today. The frame I fly, the Hyperlite Flowride, is a well thought-out design, and it is made from high quality carbon fiber. Best of all, it is only $45, and replacement arms are about $5 each. At this price point, I don’t see any need to cut my own.

3” micro quadcopters are way more interesting right now. FPV cameras that can record HD footage have been improving a lot. Rotor Riot’s Acrobrat frame]ab has really piqued my interest. It uses soft rubber bushings to separate the camera and battery from the motors. This helps keep the vibrations of the motors from shaking up your HD footage. I like the design of the Acrobrat, but it is rather heavy and quite large for a 3” frame.

Albert Kim has been talking about his frame for a 3” HD micro—the Tomoquads Crossbow. It is smaller than the Acrobrat, and it should be significantly lighter. Albert Kim designed an interesting TPU mount for the camera in the hopes of limiting vibrations. His frame looks like it was inspired by the Acrobrat, but uses a different method of vibration damping for the HD camera.

I was excited about the Crossbow until I saw the directionality of the carbon. Instead of having the carbon fibers run parallel to the arms, it has the fibers running parallel to the fuselage. The arms would be much stronger if the fibers spanned the entire length of the arm. In the Crossbow’s chosen orientation, it relies more on the resin for rigidity. The Acrobrat doesn’t appear to suffer from this shortcoming.

I’ve designed a quadcopter frame before, but it was a 3D-printed nylon frame. Designing for carbon fiber is totally different, and I don’t expect my first attempt at a carbon fiber frame to be better in any way than the Acrobrat or Crossbow.

I see details in both frames that I want to implement in my own, and I see problems in both frames that I want to avoid. I imagine I’ll create my own problems. We’ll have to wait and see how it goes!

Tell us about your quadcopter frame!

I’m working on a parametric design using OpenSCAD. I plan to Open Source the design, and it will be available as a Customizer on Thingiverse. That means you’ll be able to punch in numbers to customize the layout of your copy of my frame.

Do you want to use 1106 motors and 3” props? You’ll be able to punch in the diameter of the motor bolt pattern, and also the length and angle of the arms. Do you want to upgrade to 1806 or 2204 motors with 4” props? Just reconfigure the motor hole spacing, lengthen the arms, and you’ll be good to go.

Parametric Quadcopter Frame Arms

I started with the arms, because they’re the most complicated shape on the quadcopter. I’m emulating Bob Roogi’s guitar-style arm ends from the Floss, Flowride, and FlosStyle frames. It was an interesting challenge creating a shape like that using OpenSCAD’s shape primitives!

Arms are all I’ve designed so far. The rest of the frame should come pretty easily. I’m trying to decide between trying to emulate Albert Kim’s TPU camera mount or the Acrobrat’s bushings. I have another idea for separating the noisy side of the quad from the camera and battery, but I’m not sure how well it will work.

I’m not sure what else will be parametric. The arms are the part that will need the most tweaking. They’ll need the configurable motor hole spacing, especially if you want to go up to 4” props.

I also want to get the camera forward far enough to get the props out of view. That will involve tweaking the angles and lengths of the front arms. Once they’re in place, I’ll need to reposition the rear arms in an attempt to keep the center of gravity close to the middle of the aircraft.

This is going to be fun!

What else can I do with my new CNC machine?

I’m pleased. I have several good uses for the CNC router, and I’ll be able to start working on those projects almost immediately. It wouldn’t be disappointing if those were the only uses I found for the machine, but it would be way more fun if I could do more stuff!

I will be able to mill printed circuit boards. There’s an ESP8266 and an RF433 transmitter module wired up through a breadboard in one of my breadboard vises sitting in an old plastic toolbox in my closet. It runs an Arduino sketch that allows my OpenHAB server to control some cheap radio-controlled power outlets. Wouldn’t it be nice to tie that all together on a PCB?

Speaking of breadboards, I’m very interested in converting my 3D-printed breadboard spring vise design to a CNC friendly format. I sell them on Tindie, but I encourage everyone to print their own instead. I have to charge too much for them. They use about $1.50 worth of plastic, but it takes way too long to print a complete vise—four or five hours, if I’m remembering correctly!

Carving a vise out of wood could take minutes instead of hours. It would require a little more assembly, and I’d have to buy some dowels at Lowes, but they’d be way less difficult to manufacture.

Brian and I talked about machining some sort of coins out of aluminum. I’ve always wanted patshead.com arcade tokens. Brian wants coins with his face on them. I have no idea how practical this is, but it is on our list of fun projects.

I have some other half-baked ideas, but they’ll have to wait until I get a feel for what the machine can do. I imagine it will be a lot like owning a 3D printer. At first, I’ll be replicating things other people are already doing. Then I’ll be designing more and more of my own models. Eventually, I should start seeing every problem around the house as a problem that can be solved with a CNC router!

Conclusion

This is going to be fun. The title might be an exaggeration. I have at least a small idea of what I’m doing. A lot of what I’ve learned about 3D printing and laser cutting will apply to my new CNC router, and I’ve already spent years modeling things with OpenSCAD. It is nice to have a head start, even if it is only a small one!

Waiting to unbox my Shapeoko XXL

The Shapeoko XXL kit is due to be delivered in about two days. Carbide 3D did a good job at beating their advertised 10-day lead time! I ordered a temporary 48” square folding table from Amazon, and it is already in place. The table was quite cheap, and it shows. It is quite sturdy, but it is severely lacking in craftsmanship. If you’re looking for a quick table for your Shapeoko XXL, you could do worse than spend $115 on this heavy-duty folding table.

Do you own a hobby-grade CNC router, or are you shopping for one? What do you think of the Shapeoko? I’d enjoy hearing about it in the comments, or if you’d like to come chat with me, please feel free to stop by our Discord server!

Why I fly FPV Quadcopters, and You Should, Too!

| Comments

In December of 2016, I helped folks out at a quadcopter build event at TheLab.ms makerspace. They were building 450mm quads to fly by line of sight. My friends tried to talk me into building one, too, but it didn’t look all that appealing. Everyone talked about putting cameras and gimbals on these quads, much like a DJI Phantom, and that didn’t interest me. I enjoy photography, but videography is hard work, and I rarely see compelling footage from a DJI drone.

My friend Brian really wanted me to participate in the hobby, so he bought me the most expensive piece of required equipment for Christmas—a Spektrum DX6 radio. Don’t repeat our mistake. Don’t buy a Spektrum radio. Save money, get better range, and get more features with a Taranis QX 7 or X9D+.

Hyperlite Flowride

I ordered a toy quadcopter—a Blade Nano QX, and a mess of batteries, and I started playing. I started designing a 3D-printed FPV quadcopter frame almost immediately. In fact, I had it built, tested, and uploaded to Thingiverse by February 17. I had taken one of my first FPV flights a week later, and I haven’t stopped since!

Why FPV Quadcopters?

When I was in my early twenties, my friends and I enjoyed fast cars. We enjoyed driving them, and we enjoyed modifying them in an attempt to make them go faster. Most of my friends ended up zeroing in on the DSM family of cars—the Eagle Talon, Mitsubishi Eclipse, and Chrysler Laser. These were little all-wheel-drive monsters with solid, turbocharged engines that could handle a lot more boost pressure than was available from the factory.

This was at a time when V8 pony cars were running 14.5 second quarter miles from the factory. The Eagle Talon would only manage a little over 15 seconds from the factory, but it was possible to get that down into the high 12-second range with just bolt-on parts: a 2.5” or 3” turbo-back exhaust, a boost controller, and some modifications to the intake. This was a fantastic value at the time, and the car was a ton of fun to drive.

Racing quads scratch a lot of the same itches. They’re stupid quick, and easily pull 9 g or more when you punch the throttle. A fast sports car can only pull a little over 1 g. Flying an FPV quad is like playing a video game, except the quad isn’t virtual. You’re also infinitely less likely to kill someone when pushing your quadcopter to its limits, and that means you can push it to its limits all the time—no more waiting for traffic to clear up!

I suppose we don’t tend to modify quads, though, since we build them from scratch. We do often upgrade parts as things wear down or break, though, so that’s a little like modifying a car. I’ve spent more money on bigger turbochargers than I’ve ever spent on a single quadcopter.

And speaking of video games, building quadcopters is a lot like building a computer. There’s a wide array of components available at various price points, and you get to pick and choose what will meet your needs and fit into your budget. Unlike building a gaming rig, our quads need to be sturdy enough to survive crashes at over 80 MPH, and the build process involves quite a bit of soldering.

Racing quads? Are you racing these things?

Sometime early last year, I ran into some drone-racing guys at my favorite park. They were packing up their race gates as I was arriving, but we chatted for a few minutes. They wanted to know if I raced, and I told them that I didn’t. So they said that I must be flying freestyle, and I didn’t really think that was true, either. I was still learning.

I was every bit as much of a freestyle pilot as I was a racing pilot at that point. I was just trying not to hit trees, trying to fly a little faster each day, and trying to get a little closer to hitting things without actually making contact.

Racing sure didn’t sound like my cup of tea. I’ve participated in racing events before, but that was with cars. We used to go to the drag strip a lot—all-wheel drive is fantastic off the line! I didn’t race often, though. Running at the drag strip meant 10 to 20 seconds of driving followed by a whole bunch of waiting.

Drone racing is similar. You fly for two minutes, give it everything you’ve got, and then wait for another turn to go. This isn’t for me.

When I go out flying with my friends, it is normal for me to fly enough batteries to stay in the air for 60 to 90 minutes.

What is freestyle?

I often meet passersby while flying, and they usual inquire about the drone in my hands. I always tell them the same thing. These are FPV racing quads, but I don’t race. I fly freestyle. It is all about having fun and doing various tricks. It is a lot like skateboarding, but also a little like barnstorming!

When flying freestyle, I’m trying to have fun. I’m trying to pull off interesting maneuvers, and those maneuvers get more difficult and technical as my skills progress. I’m also capturing this with a GoPro in the hopes that I collect enough interesting footage on a single outing to string together a fun two- to three-minute video that I can set to music.

I spend most of my time flying in parks, though, so the video has been getting repetitive. Office buildings make for some awesome video, but they’re busy at least five days a week, so I don’t get much practice at locations like that.

We build and repair just as much as we fly!

This is definitely an exaggeration, but for a while it was surprisingly close to the truth. My friends and I used to buy cheaper gear, and quadcopter components weren’t nearly as bulletproof two years ago as they are today.

In those days, something was always breaking. Some days we’d smash a camera, other days we’d burn out an ESC. Sometimes you bend a motor or break an arm. Every now and then, the problem is less obvious.

Flowride Being Built

A combination of things have happened to help alleviate this problem for me. I don’t crash as often now. When I do, it is often much more spectacular, though. I’m buying higher-quality parts. The quads I fly today cost about $550 each, and I have to invest several hours building each one myself. Two years ago, I was flying a preassembled quad that cost less than $250.

It also helps that I’m spending most of my time flying at parks. I’m slowly finding new spots to fly, and those spots are full of concrete and steel. I imagine that pendulum is going to swing back the other way for me soon!

If you enjoy tinkering, soldering, repairing, and upgrading, then this hobby might be a good fit for you. I know some folks that enjoy building even more than they enjoy flying!

You don’t need to be a pro to enjoy flying FPV!

I always have a good time when I can get better at something. Especially when I can see that progress. I had fun when I was golfing. I got to watch my drives go farther and straighter. I also enjoyed practicing pitching the ball onto the green from 50 yards out. I always hated putting. I still hate putting.

I play quite a few video games with high skill ceilings, and I’m always excited when I start regularly pulling off difficult moves.

The same is true when flying FPV. I had fun when I was lucky to take off, fly a few laps around a big open field, figure out where I was standing, and disarm the quad six feet above the ground—sometimes referred to as landing. I had fun when I was learning to fly under trees. I was ecstatic the first time I pulled off an S-turn and a power loop!

I’m still learning, and I’m still experiencing that feeling. I have more free time to fly, so I’m progressing faster than most of my friends. No matter how quickly they’re progressing, though, they’re still having fun. They’re enjoying every step of their journeys.

I get out to fly four or five times a week, even if I’m only out long enough to fly one or two batteries. My friend Brian usually only gets out on weekends—winter daylight hours aren’t helping him! We have other friends that get out to a park once or twice a month.

These 5” racing quads look mean and scary!

They are. At least, they can be. Safety first!

These propellers spin at over 20,000 RPM. The tip of the props can be moving at up to 300 miles per hour! If you’re negligent, they can cut you open right to the bone. Most of our quadcopters weigh more than a pound. My setup weighs 1.6 pounds when in the air, and I’ve clocked it at over 120 miles per hour using GPS.

You can’t just fly these things around a crowd of people. Getting started in the hobby can be intimidating.

We don’t just fly big, heavy quads!

We fly smaller quads, too. Some of them are small enough to safely fly indoors.

I have a 3” micro quad—a Leader 3 from Full Speed RC. When we refer to the size of our quadcopters, we are measuring the propellers. My Leader 3 weighs less than six ounces, but it can still reach speeds of in excess of 80 miles per hour. Both [my 5” quads][phq] and my Leader 3 can reach their top speeds in less than three seconds.

The Leader 3 may be too fast and powerful to fly indoors, but it is an order of magnitude safer than my big freestyle quads. It is a great way to build confidence flying outside before moving up to a 5” quad, and it is fun for me to fly when the 5” would be too loud or dangerous.

There are all sorts of options for indoor fliers. The venerable Tiny Whoop has been a popular indoor FPV drone for years. In fact, I used to fly a cheap Tiny Whoop clone myself—the Eachine QX65. There’s been a lot of progress recently in this category, though, and I think there are a lot of better options now.

I recently picked up an EMAX Tinyhawk. It weighs more than a Tiny Whoop, but it’s still less than two ounces. The extra weight comes from the much sturdier frame, better motors, and bigger battery. I’ve been having a great time flying my Tinyhawk. It is a big upgrade over my Eachine QX65, though I hear the official Tiny Whoop and Newbeedrone Acrobee both fly better than the Tinyhawk.

I’m excited about the Tinyhawk bundle Emax is offering. It includes everything you need to get flying for $165: a Tinyhawk, box goggles, a controller, a battery, and a 6-port charger. Throw in some extra batteries—you always need more batteries, and you’ll have everything you need to get started for less than $200.

How do you get started flying FPV quadcopters?

I could write an entire post about how to get started in the hobby. I’ll do my best to keep it brief here. There are three or four common paths to get into FPV quadcopters, but you can definitely land anywhere in between. There’s no right or wrong way to do it. Each path has advantages and disadvantages.

Jump into the deep end

Buy a $200 Taranis X9D+ and $500 Fat Shark HDO goggles with a $170 RapidFire module. Then spend $600 on parts to build an awesome 5” freestyle quad, and stick a $400 GoPro HERO7 Black on top. Then you can throw all that stuff into a $200 backpack. You’ll realize that you’ve spent over $2,000, and you haven’t bought a charger or batteries yet!

My ThinkTank Backpack full of stuff

Each battery will fly 3 to 6 minutes, and they cost about $25. A charging setup will run you between $60 and $150.

Not many people begin their journey this way.

5” on a budget

You can start with 5” without spending nearly that much money. Skip the GoPro and use a backpack that you already have lying around. Buy a $120 Taranis Q X7, a $70 set of Eachine EV800D box goggles, and a $180 bind-n-fly freestyle quad like the Eachine Wizard 220HV. You’ll still need batteries and a charger.

My BFight 210

That’s less than $400. You’ll eventually want to upgrade the goggles, and the Eachine Wizard will probably need repairs quite often, but this is a much more reasonable way to get a feel for the hobby.

Each battery will fly 3 to 6 minutes, and they cost about $25. A charging setup will run you between $60 and $150.

For a long time, my friends and I were recommending the BFight 210. Even when it was new, you could get it for around $130, and some of my friends are still flying theirs over a year later. Unfortunately, the BFight 210 is getting outdated and is harder to find, so I’m recommending the Eachine Wizard X220HV—the HV model is a huge improvement over their older models.

I don’t feel great about recommending something I haven’t used myself, but that’s the best I can do right now!

2.5” or 3” is a better way to start

Buy all the same gear I mentioned in the previous section, but skip the Eachine Wizard. Buy a Full Speed Leader 3 instead. You’ll save $60, and your batteries will be even cheaper!

A little over a year ago, I might not have made this recommendation. These days, though, 2.5” and 3” quads fly an awful lot like a 5”. They’re also a fantastic way to learn to fly.

You won’t need as much space as you do with a 5” quad. They aren’t nearly as heavy, so you won’t be paying to repair someone’s windshield!

Batteries are a little cheaper. Each battery will fly for 3 to 5 minutes, and they cost about $12. You’ll use the same charging setup, and that will set you back somewhere between $60 and $150.

Forget about the real world

You don’t have to buy goggles. You don’t have to buy a quadcopter. The only piece of hardware you need to get started is the controller, also known as the radio. You can plug the $120 Taranis Q X7 or $200 Taranis X9D+ into a USB port on your computer, and use it with several popular FPV quadcopter simulators.

My Old Spektrum DX6 and My Taranis X9D+

This is the direction I point everyone in. Forget about the real world. Get a radio and hop in the simulator. The monetary investment is small. You won’t break anything when you crash. Simulator or not, you will crash a lot. You won’t have to waste time searching for your quadcopter when you crash. Did I mention that you’ll crash a lot? You won’t have to charge batteries, either.

NOTE: Yell at me about this old video. It is well over a year old, but it is the only Liftoff video on my YouTube channel. I need to record something better!

Every time you crash, you just hit the reset button and start over.

The simulators won’t turn you into a pro. I always tell people that I fly seven times better in the simulator than I do in the real world, and it isn’t as much of an exaggeration as you might think. The flight controllers and software on our quads have been improving at a tremendous pace, so the gap between the simulator and real life is closing, but you still won’t be able to pull off everything you manage in the simulator in real life. You eventually need to practice on the real thing!

There are free simulators, like FPV Freerider, but I always recommend Liftoff. It is available on Steam for $20 and supports Linux, Mac, and Windows. Liftoff is more capable than FPV Freerider, has more interesting maps, and you can directly transfer your rate settings between Liftoff and a real racing quad running Betaflight.

But the simulator just isn’t enough for me!

This brings us back to where we started. There are plenty of indoor-friendly drones to choose from. The don’t fly much like a 3” or 5” quad, but they’re a ton of fun, and they’ll get you used to the controls. They’ll also help safely scratch the FPV itch if you’re not patient enough for the simulator.

As I said earlier, Emax has a fantastic bundle with everything you need to get flying for $165. Throw in another five batteries for $25 more, and you’ll be having a blast.

If you buy a Taranis radio to learn with the simulator, the Emax Tinyhawk would be a good second step on your journey. The base Tinyhawk is $99 without the radio and goggles. It will bind right up to your Taranis, and it comes with a battery and charger. You’ve been flying in Liftoff already, so I don’t have to tell you that you’ll want more than one battery.

The Tinyhawk will fly outside, as long as it isn’t too windy. Around the house, I get nearly four minutes of flight out of each battery. There’s more room to maintain speed outside, so it is easy to drain a battery in two minutes!

Conclusion

It doesn’t matter if you’re flying around open fields doing flips and rolls, or you’re pulling off a sweet dive down the Empire State Building. It doesn’t matter if you have inexpensive gear, or you’re carrying thousands of dollars’ worth of hardware around in your backpack.

Flying FPV is fun. It is fun when you’re just starting out. Learning new tricks can be challenging but rewarding. Everyone I fly with is having a good time regardless of their skill level.

For some of us, it is a lot like driving fast sports cars, but with a lot of advantages. Flying FPV quads is so much cheaper, our quads accelerate faster than a Top Fuel drag car, and they corner harder than a Formula One race car. It is like playing a video game in real life.

Do you fly FPV quads? Are you racing or doing freestyle? Did I miss anything important here? Tell me about it in the comments or stop by to chat on our Discord server!

Updating My 2018 FPV Freestyle Quadcopters for 2019

| Comments

I built the first of my 2018 quadcopters in October of 2017. It was an OwlRC Dragon frame with individual Wraith32 ESCs, a Kakute F4 flight controller, Holybro AtlAtl VTX, and a Runcam Eagle 2 with a set of T-Motor F40 Pro v2 2600 KV motors. It was built to fly on my existing collection of 4S batteries, but all of the components were capable of handling 6S batteries.

So of course I had to try a 5S battery, and it was amazing. A little overpowered, but definitely awesome. The 2600 KV motors were a bit too fast for that kind of voltage, but it was easy enough to control that with a throttle limit on my Taranis. So at the beginning of 2018, I ordered a full set of 5S packs and enough parts to build a second, nearly identical quad. This time, I used ZMX FinX30 2600 KV motors. These are 2207, while the T-Motors are 2306.

My Pair of Hyperlite Flowride Quads

In May, I decided it was time to try a proper freestyle frame with a top-mount battery. I didn’t want to drift too far from my existing pair of quads. I decided to build a quad using the 6” Hyperlite Flowride frame. The arms on the Flowride are a little on the narrow side, so I figured it was time to make the move to a 4-in-1 ESC, so this time, I used a Tekko32 4-in-1.

I absolutely loved the Flowride frame with 5.5” props, so I ordered two more frames. It was a piece of cake migrating the components from my other two quads to the new frames. The arm-mounted ESCs look silly, but I figured when they eventually got smashed, I could upgrade to them to Tekko32 4-in-1 boards, too!

Upgrading to a Helio Spring

I had a weird problem with my Flowride quad. The flight controller, a Kakute F4, would randomly lock up—usually after a snap flip or roll.

I’d been intrigued by the idea of the Helio Spring flight controller for a while. It runs the gyro filtering separately on an F3 chip, and it runs Betaflight, Butterflight, or Raceflight on an F4 chip. This seemed like a good opportunity to give it Helio Spring a try, so I ordered one.

Helio Spring V2 on a Hyperlite Flowride

Not only did the replacement flight controller solve all my problems, but this was the best flying quadcopter I have ever flown. The Helio Spring’s propwash handling was amazing.

Even after transferring the Kakute F4 and other components on my two OwlRC Dragon quads over to identical Hyperlite Flowride frames, I rarely fly them. The quad with the Helio Spring just flies so much better. Every time Betaflight for my standard F4 boards starts to catch up, the IMU-F firmware on the Helio board seems to get an update, and it pulls ahead.

My Helio quad also has less noise in the video feed—the Tekko32 is so much cleaner than the Wraith32 ESCs. I usually only fly the Kakute F4 quads when something bad happens to my Helio Spring quad!

2018 was tough on my quads

I’ve had a lot of small failures on all my quadcopters this year. I’ve broken a few motors. I’ve burned out some ESCs, including two Tekko32 4-in-1 ESCs.

One of my Kakute F4 quads is down to three good ZMX FinX30 quads. The fourth is working, but it isn’t as smooth as it should be.

My Kakute quad with the T-Motor F40 motors has developed a twitch. Is it a bad ESC? Is the gyro going bad? I’m not sure, but it seems like a good excuse to upgrade it to a Tekko32 and a Helio Spring!

The first Tekko32 on my Helio Spring quad failed slowly. One corner started dipping on snap rolls, and that corner’s ESC was weak enough that it was limiting the entire quad to about 70 amps most of the time. Usually it could hit 150!

I lost the second Tekko32 just a few weeks ago in a crash. I smashed a motor, and one of the Tekko32’s 4-in-1’s speed controller modules was scorched in the crash. I’m not sure that a beefier ESC would have helped. When a motor gets stuck like that in a crash, a lot of power can flow easily and very quickly. It seems like that’s the most likely time to fry an ESC.

Choosing motors and getting ready for 6S

I decided to order a fresh set of motors along with my replacement Tekko32 for the Helio Spring quad. Which motors, though?

I prefer the feel of my 2207 motors, so I was looking at T-Motor F60 Pro V2 motors. I fly my 2600 KV motors with an 80% throttle cap. Naive math says a 2100 KV motor on 5S would be comparable to a 2600 KV on 5S—not quite the truth, but it is a close enough estimate for my research purposes. The T-Motor F60 is available in 1750 KV and 2350 KV. That’s either too low for 5S or too high for 6S.

I briefly considered trying the Stingy Edition Rotor Riot Hypetrain motors. They’re 2150 KV 2207 motors. That’s pretty reasonable, and only a little too high for 6S.

Hyperlite LR Edition 2207.5 1922 KV motors

In the end, I went with the Hyperlite LR Edition 1922 KV 2207.5 motors. I’m extremely pleased with my choice. They feel fantastic at 100% throttle with 5.5” props on 5S. They’re a bit lacking on the top end with 5” props on 5S, but they’re not short enough on power that I’m complaining.

1922 KV seems like a good compromise for me. When using my existing 5S packs, that’s comparable to a 2400 KV motor on 4S. In the future, when I upgrade to 6S, it will be comparable to a 2800 KV motor on 6S. This math is rather naive. The real world doesn’t scale quite like this, but the numbers make it easier for me draw comparisons to my older quads.

Since so many of us flew 4S for so long, I am often asking myself, “What would this motor be equivalent to on 4S?” I like to think of this like the old Pentium Rating that Intel and Cyrix used to use.

I now have a nice, smooth, 5S freestyle quad. I borrowed a couple of 1000 mAh 6S pack from my friend Brian. They’re perfect for my quad. They’re 30 or 40 grams lighter than my 1300 mAh 5S packs. According to the GPS, my top speed that day increased from 86 MPH on 5S to 95 MPH on 6S, and I can really feel the difference when punching the quad over trees.

6S is definitely in my future, but I’m content to continue flying my 5S packs until they begin failing.

My backup quad has also gotten the full upgrade

I have seven good F40 motors remaining. I expected to use them on my backup quad, and I expected it would take a long time before I burned through four of them.

I’ve been enjoying the Hyperlite 1922 KV motors too much. I didn’t just order a Helio Spring and Tekko32 to get my backup quad back into the air. I also ordered another set of Hyperlite 2207.5 motors.

I’m super excited about this. For the first time, I’m have two completely identical quads!

For now, my tertiary quad will still be running parts from my 2018 build. I’ll have plenty of spare motors, ESCs, and flight controllers to keep it flying. This will be the quad I bring out when I do something risky where I’m likely to lose or destroy a quad. I have no excuses now. I need to start posting videos flying over rivers, creeks, and lakes!

The parts list for my current build

Aside from the frame, all of the parts on my 2018 quadcopters were some of the most expensive components you could buy. This year, some of my components are priced a little better.

I shopped for an ESC upgrade, but I thought it was best to stick with the Tekko32—mostly due to laziness! I looked at the Aikon AK32 4-in-1. It looks like it has even more filtering than the Tekko32, and it only costs about $15 more. Connecting the Aikon to the Helio Spring looked like it was going to be too much work. The Tekko32 plugs directly into the Helio Spring—the pin order is identical. The Aikon AK32 has two extra pins. I would have had to make my own cable. I didn’t want to have to do that.

At $21.99, the Hyperlite 2207.5 motors cost $3 less than the F40 or F60 motors from T-Motor. The motors and 4-in-1 ESC don’t add up to a huge cost savings, but it is a surprising savings nonetheless!

I’ve also been saving a few dollars by using the AKK X2 Ultimate VTX instead of the Holybro AtlAtl. When I chose the AtlAtl, it was convenient to have a VTX that mounted in the stack. My frames aren’t tall enough for three boards in the stack, though, so I had to move to something different.

I figured the AKK X2 was worth a try, but I also assumed I was going to be getting what I paid for, and I thought I’d eventually be using something more premium. That wasn’t the case. I’m quite pleased with the AKK, and I’ve ordered two more for each of my other quads.

  Hyperlite Flowride 2019 Build
Frame Hyperlite Flowride 6”
Motors Hyperlite LR Edition
2207.5 1922 KV
Props HQ 5.1x4.6x3
ESCs Holybro Tekko32 4-in-1
FC Helio Spring V2
VTX AKK X2 Ultimate
Camera Runcam Eagle Micro
Antenna TBS Triumph
Receiver TBS Crossfire Nano
GPS Module HGLRC Ublox M8N

GPS on a race quad? What!?

I’ve avoided GPS for a long time. I wasn’t opposed to the idea, but support in Betaflight used to be almost worthless, and our older flight controllers didn’t tend to have UARTs to spare. It felt like we were lucky to have just enough UARTs for ESC telemetry and SmartAudio!

Not only that, but the GPS units I remember seeing a few years ago were big, had large antennas, and they cost more than my flight controller. It surely didn’t seem like it was worth the space, expense, and effort to put a nearly useless component on my freestyle quads.

This has changed. Betaflight has a new feature called GPS Rescue, and you can get small GPS modules for $10 to $20. Even with ESC telemetry, TBS Crossfire, SmartAudio, and a GPS module connected, my Helio Spring still has one unused UART. GPS is cheap enough to try and easy enough to fit on my quad now, so why not?

GPS Rescue is absolutely nothing like the return-to-home feature on a DJI drone. If you think you’re going to put this on your freestyle quad to avoid learning to land, you’ll be in for a world of trouble!

GPS Rescue only works if you’ve flown a few hundred feet from your starting location, and it will only return to your general area. It will attempt to land, but I tested that once, and it did a poor job. It doesn’t have a vast array of sensors and cameras available like a Phantom or Mavic, so your Betaflight quad will happily descend into a tree.

This is fine, because it isn’t intended to make your race quad behave like a DJI Spark. It is meant to help bail you out when your video feed gets sketchy.

Sometimes you’re flying at the edge of your video range. You turn around to fly back, and your video gets much worse when your antenna orientation changes. Sometimes you drop behind a hill or you wind up slipping behind a building or wall. These would be occasions when you might be happy to have the GPS Rescue mode switch available to you.

Your quad should climb to a preset altitude and start flying towards you. When your video feed clears up, you can take back over and resume your flight.

It is possible to set GPS Rescue as your failsafe, but this seems like a terrible idea for most of us. Imagine losing your control link while under a tree or while flying inside a building or parking garage. Your failsafe would kick in, GPS Rescue mode would activate, and your quad would immediately ascend into the tree or the ceiling.

The new GPS options have my OSD even more cluttered than ever. Knowing my ground speed is fun, but the other data is mostly useless to me. I have direction to home, distance from home, and number of satellites enabled in my OSD. Once I get GPS Rescue tuned in, I’m hoping I’ll have the confidence to turn half of those options off!

GPS Rescue is worthy of its own blog post.

New props for 2019!

For most of the last year, I’ve flown 5.5” props. I started with the DAL Cyclone T5544C props. They fly great, but they often make it almost impossible to get smooth GoPro footage. A fresh set is usually fine, but one tumble into the grass, and then you’re almost guaranteed to be in Jello City until you change props. They’ll all look fine, but they’re not!

Then I switched to the HQ 5.5x4x3 v1s props. They’re fragile in a different way. They’ll survive gentle crashing without inducing Jello, but when you hit a tree branch, you often completely explode a prop!

I felt it was worth the trouble running 5.5” props. It is a reasonable compromise between 5” and 6” props. 6” props have more bottom-end power that you can really notice when pulling out of a dive. They’re also more efficient, so you’ll usually see longer flight times. The biggest problem with 6” props is their lack of top end. They reach top speed quite quickly, but your top speed tends to be quite limited.

You can say all the same things about 5.5” props. The advantages and disadvantages just aren’t as pronounced. You can catch yourself from a dive with 5.5” props almost as well as with 6”. I was getting flight times that were 20% to 25% longer with 5.5” props compared to 5”. The lack of top speed isn’t as bad with the 5.5”, either.

So why am I giving up the 5.5” props?

I had a lot of luck with getting smooth flight footage using HQ 5.5x4x3 v1s props, but when my stock was running low, they were out of stock everywhere. They haven’t been restocked, either, so I’m assuming they’ve been discontinued. Flying DAL T5544C props is way too frustrating, so I needed to find a plan for the future.

I tried out an old set of Racekraft 5051 props that I found in my closet. Racekraft 5051 props are awful for freestyle—they’re very, very noisy. That doesn’t matter, though. They’re a ton of fun, because they are so damned fast!

With the 5.5” props, I have to limit my throttle to 80% when I fly 5S on 2600 KV motors. Any higher, and the props flatten out, and the quadcopter sounds like a banshee. I usually don’t pull more than 125 amps on 5.5” props.

The Racekraft 5051 props are super stiff. They can go flat out with my high KV motors with too many volts. At 100% throttle, they have no problem breaking 180 amps! They’re stupid fast, even if I use the same 80% throttle cap.

I spent two weeks flying random 5” props that I had in my closet, then I went back to 5.5” props. This was an eye-opening experience.

Going back up to 5.5” props made me realize just how much top speed I was giving up. I was also giving up a lot of responsiveness. Even so, I had quite a collection of 5.5” props, so I waited until I burned through them to order new 5” props.

HQ 5.1” v1s props

I ordered an assortment of 5.1” HQ props. 5.1x4.1x3, 5.1x4.6x3, and 5.1x5.0x3 v1s props. They’re all fantastic.

The 4.1 pitch props feel extremely responsive, and the 5.0 pitch props feel like they offer a lot more punch.

I only have a few sets of each of those two props. I ordered a whole mess of the 5.1x4.6x3 props, and I didn’t even wait until I had a chance to try all three. I figured if I was going to make a mistake, I’d err towards the middle. I’m low on props, so I couldn’t exactly wait until I finished trying all three to order more!

The 4.6 pitch HQ props are a good balance between efficiency and thrust. With my relatively huge 1300 mAh CNHL 5S packs, even a rather high-throttle freestyle flight lasts at least three minutes. I’d say I average a little over 3.5 minutes, and I’ve had some gentle proximity flights approach six minutes.

I don’t know if it is just the props, improvements in Betaflight, or improvements in the recent release of the 1.1.0 IMU-F firmware, but I tend to have Jello-free GoPro footage almost all the time now.

I purposely flew the same set of HQ props several days in a row. Even after some pretty rough crashes, I just bent the props back into shape and kept flying. When one of the props still had a visible crease, I thought for certain that I’d have major shaking in my GoPro footage when I got home. It was still smooth as glass. It was awesome!

I haven’t had that kind of luck with every set of 5.1” HQ props. Sometimes things are unbalanced in just the right way that I do get Jello in my GoPro footage. I had shaky footage eight batteries in a row the other day. The props looked reasonably clean, the quad sounded normal, and it flew great. I just have to be more vigilant.

At any rate, having bent props occasionally causing Jello is a huge win over the DAL T5544C props, because they often caused Jello in the GoPro after touching a few leaves!

4S vs. 5S vs. 6S

I’ve been flying quadcopters with a huge compromise for almost a year now. I built my 2018 quadcopters to be capable of supporting 6S voltage, but I assumed I would be running mostly 4S batteries. So I built my quads with 2600 KV motors. I enjoyed the high KV 2305 motors on my old Holybro Shuriken X1, so I figured the newest revision in the same lineup of motors was a good plan.

Those motors were a ton of fun on 5S, but I can see now that it wasn’t the smoothest setup. Even with the throttle capped at 80%, they still had an explosive amount of power—more power than I needed. The throttle cap doesn’t limit the amount of power Betaflight has available during flips and rolls or when it is attempting to stabilize your craft. This made tuning a bit difficult.

Today, my compromise is in the other direction. I have a stack of 5S batteries, and I know for certain that I will be replacing them with 6S batteries as they start to age and fail.

On 5S with 5.1” HQ props, I would almost tell you that my new quads have all the deficiencies of 5.5” or 6” props with none of the advantages. The top speed is limited quite a bit with this combination of voltage and KV, but I’m also not seeing that instant torque when pulling out of a dive like you do with 5.5” or 6” props.

I also don’t get that explosive acceleration that I was seeing on 5S with the Racekraft 5051 props on 2600 KV motors. That stupidly fast acceleration combined with the high top speed was fun, and I certainly don’t expect to see it on 5S or 6S with 1922 KV motors.

I don’t mean to sound like I’m complaining. This is the best freestyle setup I have ever owned. It is smooth, snappy, and it is usually rather difficult for me to induce propwash oscillations.

When I moved up to 5S, it was a really good value. Reasonable but budget-friendly 4S 1,500 mAh packs cost about $20 to $22 at the time. My 1,300 mAh 5S packs from CNHL were around $25. These 5S batteries are a bit heavier than the $20 1,500 mAh 4S packs, but that just means that they have more capacity. They cost about the same or less than 4S packs if you measure by the watt hour.

At the time, 6S packs weren’t available in as wide a selection as they are today. I would have been paying $35 to $40 per pack. I save a lot of money, and the efficiency and power gains when upgrading from 5S to 6S aren’t that dramatic.

6S batteries really open this quad up. I ran two of my friend Brian’s 1,000 mAh CNHL 6S packs. They’re 30 or 40 grams lighter than my 1,300 mAh 5S packs, which is nice, and they make the quad go quite a bit faster.

There are two reasons why I’m upgrading to 6S, and Brian’s batteries are one of them. The most commonly available 5S battery for miniquads is 1,300 mAh, and they weigh nearly 220 grams. That’s too heavy. If there were a reasonably priced 5S pack somewhere around 180 grams, I wouldn’t have chosen 1922 KV motors. I would have shopped from something in the 2200 to 2300 KV range and kept on flying 5S.

Brian’s 6S 1,000 mAh packs from CNHL weigh about 185 grams, and they cost about $28 each. I’m excited about this weight savings. I’ve only flown two of these packs so far, but my quad felt so fast and nimble, and my flight times were comparable enough to my 1,300 mAh 5S packs. I’d hate to make a judgment about that without more data, but I think I’m going to be pleased with my future battery upgrade.

The future of this build

As long as I’m talking about the future, I may as well talk about cameras. My GoPro Session 5 hasn’t failed yet, but I’m worried about it. The back cover isn’t attached correctly anymore, and I suspect there will be a camera upgrade in my future.

I’m bummed out that the Session 5 has been discontinued. It is a fantastic form factor for FPV freestyle quads, and it is quite a bit more durable than the larger GoPro cameras—especially when it is inside a nice TPU mount. There’s still a small chance that I’ll buy another Session 5, but their price at Amazon is already approaching the same price as a GoPro Hero 6 Black.

I’m excited about upgrading to a full-size GoPro. Even the Hero 6 Black would be a big upgrade. The Session 5 has a minimum ISO of 400, while the Hero 6 Black can go down to 100. That would make ND filters slightly less necessary. Not to mention the video quality is just a little better overall.

The full-size GoPro cameras weigh roughly 45 grams more than the Session 5. I’m not excited about the idea of flying a freestyle quad that weighs more than 700 grams. My current weight with the Session 5 and a 1,300 mAh 5S pack is just shy of 680 grams.

I’m hopeful that I’ll be shedding enough weight in the future to even things up. When I upgrade to 1,000 mAh 6S packs, I’ll be losing 30 grams.

Plugging a heavy TBS Triumph antenna into an MMCX to SMA adapter is wasteful. I could probably save another 10 grams or more by plugging a Lumenier AXII antenna directly into the VTX. Unfortunately, there’s not a lot of room in the back of my Flowride frame for a VTX, so I have it sitting between the camera and the flight controller. I’m not so sure that saving 10 grams is worth the effort, but we’ll see.

I won’t be surprised if half the batteries I carry will be 6S within the next 3 months. I currently carry eight 5S 1,300 mAh packs, and I bring along a field charging setup if I’m going to spend more than 20 or 30 minutes in the air.

Three of my 5S packs are getting pretty old and tired. Old enough that I’ve started thinking of them as my warm-up packs. It won’t be long before they need to be retired, and when they are retired, they’ll also need to be replaced!

Conclusion

I honestly didn’t think I’d have all that much to say about this upgrade. I switched frames nearly six months ago, and the only significant change I’ve made to the hardware since then is the motors. Yet here I am about to break 4,000 words on this post. How did this happen?!

Most of the components in this build have served me well for six to twelve months so far, and I expect that all the hardware in this build will be durable.

What do you think? How did I do? I feel like I chose the perfect motor for my transition for 5S to 6S. Do you think I should have chosen any different components this time around? Let me know what you think, or stop by our Discord server and chat with me about it!

Hover-1 XLS Folding Electric Scooter Brake Upgrade

| Comments

I’ve had my Hover-1 XLS Scooter for somewhere around seven months now, and I’ve put over 200 miles on it. I mostly take it on short trips to the park—most of the time I take a round trip shorter than 1.5 miles, but I do tend to make those trips almost every day.

In the time I’ve owned the scooter, my only major complaint has been the brakes. Out of the box, they didn’t stop the bike very well. I was able to adjust them, and that improved the situation a lot, but they still weren’t great.

I believe I over-adjusted the front brake, leading it to start leaking hydraulic fluid. I noticed this after I was already out of warranty. I could have attempted to get the hydraulic caliper replaced anyway, but from what my research tells me, these cheap hydraulic calipers are horrible.

If you found this post, you’re probably looking to replace a broken brake caliper on your Hover-1 XLS. I’m not going to make you read the entire post to find out what I used.

Here’s the TL;DR. I bought a pair of Shimano M375 brake calipers. They aren’t hydraulic, so they’re less prone to having weird issues. They bolt right on, and they have so much more stopping power than the stock calipers, and they’re inexpensive. I’m able to lock up the wheels and skid to a stop. I wouldn’t recommend doing so, but the original brakes certainly couldn’t do that!

The long story

Do you know the story of the boiling frog? I was that frog. My brakes were performing worse and worse until just about stopped working. By the time any replacement calipers arrived, my brakes weren’t really brakes anymore. They could reduce my speed, but they sure wouldn’t stop me!

I procrastinated quite a bit. I’m not a completely useless mechanic. On cars, I’ve replaced brakes, swapped exhaust manifolds, upgraded fuels pumps, and done all sorts of tuning. Replacing calipers on a bike should be easy, right?

Shimano M374 brake calipers on my Hover-1 XLS

My biggest problem was not knowing what to order. There seem to be all sorts of sizes and mounting options for brakes. What kind of mount does the Hover-1 XLS have? Am I going to have to replace the rotor, too? If I order the simpler non-hydraulic calipers, will I need to replace brake levers and cables, too? Ugh!

I still know very little about bicycle brakes. I just looked for a set that were meant to fit the same size brake rotors—the Shimano M375, and I eyeballed the mounting hardware in the photos. The calipers I chose were less than $20 each with free 2-day Prime shipping. Even if I didn’t or couldn’t return them, I’d only be out $20, right? It seemed worth the risk!

I only ordered one caliper. I replaced the dead, leaking front caliper, and adjusted it using the business card trick. The I went for a ride. I didn’t even wait until I got home. I ordered a second caliper to replace the rear brake while I was still at the park!

My Hover-1 XLS Folding Electric Scooter

These calipers are an amazing upgrade and simple. They’re a little more sensitive, especially compared to my dying front caliper, so they did take some getting used to.

Two months and another hundred miles later

It has been two months, 100 more miles, and a fresh set of brake calipers since I last wrote about my Hover-1 XLS scooter. Was it the right choice? Should I have bought something else?

I know this isn’t a review. If you found this post, you probably already own one of these scooters. I’m still going to give you my opinion anyway!

It is disappointing that I had to replace the brakes, and that the less modern, less complex parts work better than the original hardware. Hover-1 wanted to be able to list hydraulic brakes on their spec sheet, and they didn’t even use proper hydraulic brakes—the good ones have hydraulics right up to the brake levers.

Shimano M375 brake calipers on my Hover-1 XLS

I always tell everyone that I probably should have bought an electric kick scooter, like the Xaiomi M365. They’re nearly as fast, have almost as much range, but they weigh half as much. Loading the 50-pound XLS scooter into the back of the SUV is an awkward maneuver.

I did learn one useful trick to help loading your Hover-1 scooter into a car. If the kickstand is down when you’re folding up the bike, you can use the kickstand as a handle. Then you can grab the other end of the scooter just below the handlebars. This makes the process much less awkward!

Another good option would be converting a regular pedal bike into an e-bike. Electric conversion kits are available at Banggood for around $400, and they look pretty easy to set up. With some time and effort, you could definitely DIY a proper e-bike that won’t cost much more than the Hover-1 XLS. You’ll have a much more capable bike that way, but you’ll need to invest an unknown amount of time. Ultimately, I imagine this is the best choice.

My dirty Hover-1 XLS Scooter

All that said, I’m not unhappy with my purchase. So far, I’ve invested something short of $600 and a couple of hours into my e-bike purchase. That includes the scooter, a helmet, and the brake calipers. Weather permitting, I ride the bike almost day. I’ve probably been on around 100 journeys this year, and I expect to continue to use the e-bike just as often over the next year.

What do you think? Do you have a Hover-1 XLS? Do you enjoy it? Are you happy with your purchase? Do you have some other form of electric transportation, like the Xaiomi M365? I’d like to hear about it in the comments, or you can stop by our Discord server to chat about it!

Six Months With My Ryze Tello Photography Drone

| Comments

Back in March, I ordered a Ryze Tello photography drone. Why on Earth would I buy a toy drone for photography or video purposes?

Myself and many of my friends fly FPV racing and freestyle quadcopters. It is a ton of fun. Some of those friends have proper photography drones: a DJI Phantom 4, a Mavic 2 Pro, and a couple of DJI Sparks. These don’t seem to be any fun at all.

Especially the DJI Spark drones. They’re constantly requiring updates before they’ll allow you to fly. The updates often failed and needed to be retried. By the time they were done updating, they’d wasted half of a battery just sitting on the ground.

The DJI Spark was the only one of those drones that I’d be willing to make room for in my already overstuffed quadcopter backpack. I just didn’t want to spend $350 to experience the headaches my friends were having with their Sparks.

Why was the Ryze Tello interesting?

The Ryze Tello is $100 and makes use of some of DJI’s amazing software. It is also extremely tiny—it is the smallest drone in my backpack.

My needs are simple. I don’t need a drone that can follow someone around. I don’t need fancy panning shots. I just wanted an camera on a tripod, but I wanted that tripod to be 20 feet in the air.

I don’t need amazing video. I just wanted some B-roll for my YouTube videos. I figured I could put the Tello in the air, aim it at where my friends and I were milling about, and leave it sitting there pointing at us for five to ten minutes.

For the most part, I actually can manage to do this. Unfortunately, it is terrible. Worse than terrible.

I haven’t recorded a single usable video with my Ryze Tello

I’ve tried so many times. I don’t know why the Tello is still in my bag.

During the first few months, the biggest problem I had was lighting. The Tello is just an aerial webcam, so I didn’t expect much in the way of quality. In April, the average temperature here is nearly 80 degrees, so we almost always find a spot in the shade.

We don’t exactly sit in the dark, but it is dark enough that the Tello’s footage looks horrible. It does better if your subject is in direct sunlight on a bright day, but we don’t usually want to spend much time in direct sunlight. Spending hours in the sun is how we get burned!

When we had cooler days, I made sure to spend some time flying my FPV quads while I was standing in some good lighting. The video I recorded is almost worth using. Almost.

This is the biggest problem with the Ryze Tello. It doesn’t record to local storage. All footage is streamed over WiFi and recorded by your phone.

Don’t let the Tello get too far away from your phone!

The farther the Tello is from your phone, the more often it drops frames. It doesn’t just drop frames, though. Your bitrate gets lower as distance increases. When the bitrate drops, the video becomes a useless, blocky mess.

I’ve sort of gotten around this by planting the Tello in the air and leaving my phone directly underneath it. It helps with the bitrate, but it is still far from perfect.

When you’re playing back your video, you can see every keyframe in the video. That’ll be the frame where everything looks crystal clear. Then everything gets blurrier and fuzzier until the next keyframe. This repeats every few seconds.

The Tello is often bad at holding its position

I’ve flown plenty of toy quadcopters with tiny brushed motors, just like the Ryze Tello. They don’t do well in the wind. That’s fine. That was to be expected.

The Tello uses a camera on its underside to help it hold position. It needs something to focus on. If you’re out in a grassy field, you’re in trouble. Dropping something large under the Tello seems to help, but it isn’t perfect.

It drifts quite a bit while attempting to record 10 minutes of video. I’ll often find that it aimed at my friends and I for two or three minutes, then it starts to yaw to the right, and it continues to slowly yaw for the rest of the video. It doesn’t take long before we’re completely out of frame.

Conclusion

If you’re looking for a toy drone to fly around and play with, the Ryze Tello isn’t terrible, but there are much better toys. The Eachine E010 has no camera, but it is only $13. The Eachine E013 with extremely basic FPV goggles is about $60, and the bigger Eachine FlyingFrog with the same FPV goggles is $88. These are all a lot more fun than the Tello, and they’re much better stepping stones into the world of FPV racing or freestyle!

If you’re looking for a very basic, low-end photography platform, you should look elsewhere. I would be extremely pleased with the Tello at $99 if it recorded video to local storage. I don’t care if I have to add an SD card, or if it had a few hundred megabytes of on-board storage. Without local storage, the Tello is essentially useless for me.

The Tello’s ability to hold position outdoors is impressive considering its size—it would be difficult to do much better with this form factor. That ability is completely wasted if you can’t manage to capture a clean video.

Do you own a Ryze Tello? Have you managed to capture any compelling video with it? Are you using one of its competitors, like the Xiaomi MiTu? Let me know what you think in the comments, or stop by our Discord server to chat about it!